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Renewal process

4 )

Renewal process: ISls are independent and identically distributed.

02l

]
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Instantaneous rate of a renewal process

Instantaneous spike-rate A(¢)

Point process

timing of the last mp ¢ I t+A
spike before t.

P(a spike in [, + A)) = )L(t—t*)A+0(A)

*

Instantaneous rate depends on the
elapsed time from the last spike.
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Instantaneous rate and |SI-density

/ Poisson process \

P(aspike in [1,1+A)) = AA+0(A)

Constant intensity A

I t+A

Exponential ISI distribution

f(r)=Ae™

/
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Instantaneous rate and |ISI distribution

/ Renewal process . P(aspikein [t,t+A)) = )L(t—t*)A+o(A) \

Time-dependent rate
A7)

N

4
Other ISI distribution
f(7)

L L L L L L
\ 2 4 6 8 10 12 14 /

What is the relation between IS| and instantaneous rate for a renewal process?
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Conditional intensity function (CIF)

4 )

Conditional intensity function (CIF)

| Spike
Probability that a spike occurs at time t given : A
that no spikes are generated for time t. t [+
Alt=t"
P(a spike at [t,t+A)|no spike in [£",t) ) ( )

A1)t . —

The CIF is an instantaneous spike-rate. It is also called the hazard function,
\age-specific failure rate, and recovery function. /
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IS| density and CIF

4 )

The relation between the I1SI density and the conditional intensity function (CIF)

Elapsed time since the last spike: T=¢—-t f(r)  p=f_g
-0 WA
l_fof(u)du £ t t+A

(v) = A(r)exp|~ [ A(u)du] s
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Conditional intensity and IS distribution

/Relation between the conditional intensity function and ISI distribution \

P(r<X < ‘L’+A|X>‘L’) X : Random variable for ISI.

Me)=lim———
_ P(r<XsTtAX>T) |
=lim
A=>0 A P(X>r)
_ P(r<X=7tA)
= lim
A=>0 A P(X>r)
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Homework 2-1

Obtain the relations, f(7)= X(T)expl—f;)t(u)du]
By rewriting the relation and ISI distribution, we obtain
—F’(r) d
A« =" —1 F
(v) F(7) ai ° ()
Thus, dilogF( )=-A(t) ,or dlogF(t)=-A(r)dt
T

Integrating the both sides of the equality from 0 to T yields
F(T) = exp[—fo )L(u)du] log F(7)-logF (0 f Au

[ 2(u)du

Derivative of the CDF yields the above expression.

F(7)=1-exp

Alternative solution: generalize the derivation done in Homework 1-3.

g J
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Example: Gamma process

g Gamma process )
i 1 o k Shape parameter
i __ = —-KAT
sidensity STt € r Gamma function
— | - 4
Intensity function )L(T)=lf£f(l) F(K) fou e " du
S Y,
g ISI density Intensity function )
ﬂlog _____
Gamma density R
1 K1
flt)=——K KAT e
_ () () )
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Gamma process

40—//// 1
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ot Random K=1
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«r Regular k=1.8

7

»l Irregular k=0.8
2l

| || | [

ISl distribution (unit rate)
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Inverse Gaussian model

/ Inverse Gaussian k=1.8 \

100

60

o AAAAAA AOAL LIANAN

=W i

Inverse Gaussian model Intensity function
K=0.5 2.0 7
1571
15T
1.0 T 1.0
051 5T NS
) —
0 1 2 3
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Which renewal model for neuronal spikes?

.......... Exponential
A —— Gamma

0.12

:%’ — Inverse Gaussian
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0 40 80 120 160 200

IS distribution of spike trains from gold fish retinal ganglion
cells. Lines are maximum likelihood fits of Poisson, gamma,
and inverse Gaussian models density.

Brown et al. (2004) Computational Neuroscience : A
Comprehensive Approach. CRC Press.
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The point processes written by the conditional intensity function

POINT PROCESSES
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Conditional intensity function

Point process /\
Spike history H_

A
( \

(
Definition of a point process

Causal point processes are completely characterized by the

conditional intensity function. Conditional intensity function

P(aspike in [1,t+A)IH,)=A(t1H,)A+0(A)
P(>1spikes in [1,t+A) | H,) = 0(A)
P(no spikes in [£,t+A)IH,)=1-A(t1H,)A+0(A)

Spike history: H, = {tl,tz,---,tN[}, where N, is the number of spikes in (0,t].

\_ J
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CIF of point processes

P(aspike in [£,t+A)IH,)=A(t1H,)A+0(A)

r )
Spikes are independent each other = Poisson process
)L(t I Ht) =A Homogeneous Poisson process
A(t1H,)=A(1) Inhomogeneous Poisson process
\. J
" )

Spikes are not independent each other = Non-Poisson process

)L(tIHt)=)L(tItNt)=)L(t—tNt) Renewal process
time of the last spike before t.
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CIF and conditional ISI distribution

Point process ISI distribution: f(f | Ht)

il

Spikekistory H,

Ly, I t+A
Probability of a spike in (¢,f+A]: )L(t | Ht)A
(
Conditional intensity and ISI distribution
ara ISI distribution: f(f|H,) (>,
)L(t | Hz) = t : The density of the next spike at
- [ f(ulH,)du time t, given given the spike
K history.
P{e1#) = 2{e 1 )oxpl- [ 2{ul )
g

~
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Likelihood function of a point process

( )
p(t,ty.t, NN, =n)= ﬁ)t(tl. IHti)exp[—fOT).(ulHu)du]
G - J
4 )
n
p(titysnnnt, ANy =n)A" = £ (1 )A] | £(2,1H, ) A P(t,>T 1 H, )
i=2
=ﬁx(t,. IHti)Aexp[—fOT)L(ulHu)du]
i=1
Here the IS! distribution is f (t,-|Hti)=)~(t,-|Hti)eXp[— :"l)t(ulHu)du]
\ _ y
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In application to simulating a point process

TIME-RESCALING THEOREM
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Time-rescaling theorem

By the time-rescaling, any (causal) point process can be
transformed into a Poisson point process with an unit rate.

4 )
Time-rescaling theorem

Let O<? <2, <---<t <T be arealization from a point process

with a conditional intensity function ).(t | Ht) for t & (0,7].

Then define the transformation A(tl.)=f0t%(u|Hu)du for i=1,--,n.

Then the A(tl.) (i=1,---,n) are a Poisson process with unit rate.

Brown et al. (2001), Daley and Vere-Jones (1988).)

g

4 N
Time rescaling theorem is used to
1. Simulate a (causal) point process.
2. Assess goodness-of-fit of the point process model to the data.

. J
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Example

Inhomogeneous Poisson process A
X0)
Time-varying instantaneous rate A(r)
. . t
Time-rescaling A(t)=f0)L(u)du
ISI in a rescaled time axis follows an Act) t
unit exponential distribution.
N
f
Ti=A(ti)_A(ti—l)=ft' )L(u)du T .
-l Ay remmreesseeesseesseeney :
T,~g(r) where g(7)=¢ N .
Ao
Y t vy ¥ "
IS density in the original time scale b bbb
F(1110) =8 (7)) = 21 )exp | =" Au)du]
ti i1
\_ _J
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Proof of time-rescaling theorem

é )

Let the rescaled ISI be 7, = A(z,)=A(z._,), where A = f:)t(u | Hu)du.
We also define 7, = ftTA(u | Hu)du.

We prove that the rescaled ISls are iid exponential random variables:

n

p(T,,750 T, N T, > T, ) = (Hexp[—ri])exp(—rT)

i=1

By change of variables, we obtain the relation:
p(T,75 T, N T, > T, )= p(ALA,,..,A, NN, =n)

| dt,

= H K}p(tl,tz,...,tn NN, =n)

2= A1 1H, i
( ) =exp[—fOT)L(ulHu)du]

=e—Tle—Tz N LY
Here we used the density of the spike-timing in original axis as

p(titysnt, NN, =n) =] [ A(1 IHti)eXp[—fOT)L(ulHu)du]
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Methods for simulating a point process

e N
1. Method based on the instantaneous rate CIF

At every steps, compute the conditional rate A(r)

Approximate the spike occurrence by a m/ W:
. Bernoulli process. a spike A(f)A no spike 1-A(¢)A

d )

2. Method based on IS| distribution "1 18l distribution

Generate ISls using the inverse function method.

.
o
-
e

N X
r ™

3. Method based on the time-rescaling theorem 1 L CIF

Generate an exponential random variable. N

T 05T
Integrate the CIF from O to t until it reaches the r.v.
0'00 ; jt g ; fo 1; 111 1%6 1%8 2{0

. *
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Algotintm based on time-rescaling theorem

Constructing a point process via time-rescaling theorem

0. Let j=1 and f,=0.

1. Generate an exponential random variable via the inverse function method.

& =-log& ,where & is uniform random variable in [0,1].

2. Integrate the conditional intensity function until it satisfies

g = :7 AMulH,)du

3. Let the i-th spike time as 7, =7.

Update i<—i+1, then repeat 1-3 until the spike time becomes larger than T.
g _/
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Example: Gamma process

100 ISl distribution (unit rate)
»- Random K=1 ]

ol | I I [ 1] I

®
o

- Regular k=1.8

wk / / A A4 /_
20/ . .. CIF

| Irregular k=0.8 < p
C S

ok
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Examples of time-dependent renewal processes

Random Regular

Inhomogeneous Poisson
g Inhomogeneous Gamma x=1.8

80_ .
— = Underlying Rate 80 ‘ i
\
—— Intensity N
40| 7 40 W{I ’ N
0 -~

1[s]
PRI i ULRLY FWmn w1 IR

_ Regular
Inhomogeneous Inverse Gaussian x=1.8

Inhomogeneous Gamma x=0.8 Irregular
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Construction of a time-dependent renewal process

4 )
~” (Time-rescaling) A(t)=f0t7t(u)du
(Rescaled ISI) ( 52, t)EA(tl.)—A(tl._l)
' (Distribution of L RRPR

" rescaled ISI) &7 F(")K(KT) :
R
T ! 5
b ey (Distribution of ISI)  p(t 1.4, )=[5e(714, )
N EE
A+

¥ i vy | |t A )

1 ) sty ] t I . f At B ( 1277 i,

t th tyty ot (Intensity) ( 2 ) l_fti_l ( it )Lt t)d
\_ Y,
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In application to assessment of model goodness-of-fit

TIME-RESCALING THEOREM
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Quantile-Quantile plot

(" Quantile-Quantile plot A
A graphical method for comparing two probability distributions
by plotting their quantiles against each other.
Given the two CDFs, F(x) G(y),
the Q-Q plot is a plot given by (F"1 (9).G™ (q)) for 0=g=<l1.
. y,

Q-Q plot can be used to compare two empirical distributions, two model
(parametric) distributions, or an empirical distribution against a model distribution.

IS
T

Q-Q plot of an unit exponential
distribution against empirical
distribution of 1000 samples from the
unit exponential distribution.

Empirical Quantiles

Model Quantiles
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Q-Q plot for assessing point process models

( )

Q-Q plot for assessing a point process model.
Comparison of the rescaled I1SIs and an exponential distribution.
F(r) =1-¢" An exponential distribution function.
G(7) An empirical CDF of the rescaled ISls.
k-0.5
For n ISls, construct uniform ticks in [0,1]: b, =—— for k=1,---,n.
n
| Plot (F'(B.).G™ (b)) for k=1,--n. )
(" | )
E 20
% — [P  Inhomogeneous Poisson
CDJ 10 — |G Inhomogeneous Gamma
S — IIG  Inhomogeneous inverse Gaussian
5
LIEJ ,
0 5 10 . :
L Model Quantiles Barbieri et al. J. Neurosci Methods 2001. )
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Kolmogorov-Smirnov (K-S) test

CDF of the rescaled ISls K-S plot

T, i=12,---,n
re-scaled ISI that obeys a unit ’ yod
exponential distribution. T Y .

z, =1-exp ( -T, ) 1
Z; obeys a uniform distribution. Py
K-S plot s /,? T

Re-order Z; from smallest to largest:
z, - z,

!
z, z, z

k=05 for k=1,---,n.

For n ISIs, construct n uniform ticks in [0,1]: b, =

Plot (z.b) for k=1,--,n.

K-S test 95 confidence bound are well approximated as b, +1.36/n'".

Brown et. al. Neural Comput. 2001
\_ Barbieri et. al. J. Neurosci. Methods 2001 D
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Examples of K-S plots

-_—

.......... Exponential
— Gamma
Inverse Gaussian

Cumulative Distribution Function
o
(8]

0 6.5 1
Model Quantiles
K-S plots for the fits of (homogeneous) Poisson, gamma,

and inverse Gaussian models fitted to spike trains from
gold fish retinal ganglion cells.

Brown et al. (2004) Computational Neuroscience : A
Comprehensive Approach. CRC Press.
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What we learned

* Renewal process: Conditional intensity function and ISl density. ]

» Point process written by CIF: conditional ISl distribution, and their
likelihood.

« Time-rescaling theorem (Example of an inhomogeneous Poisson and a
proof).

 How to simulate a point process via the time-rescaling theorem.
(Examples of inhomogeneous renewal processes).

 How to assess a point process model via the time-rescaling theorem.
(Q-Q plot and K-S test)
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Tomorrow, we will learn

« Exponential family of distributions and generalized
liner model.

* Discrete-time likelihood of conditional Bernoulli and
Poisson distributions.

 GLM framework for a continuous-time point process.

» Review of a paper by Truccolo et al. Focused on methods
for model validation.
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From the feedback of the last lecture

I t+A
P(aspike in [1,1+A)) = AA +0(A)

P(>1 spikes in [1,t+A)) = 0(A)
P(no spikes in [1,1+A))=1-AA+0(A)

- )
Whatis 0(A) ?
Example
A o(A)=A*
im 28 _g (*)
A—+0 A 2
Im—=1lmA=0
A—+0 A A>+0 | -
L _J
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From the feedback of the last lecture

110011 00O0101010O01O0O0

If you do not have 0(A) , namely 0(A)=0

P(a spike in 7,1+ A)) = AA
P(>1 spikes in [1,t+A))=0
P(no spikes in [£,1+A))=1- AA

This is a Bernoulli process.
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From the feedback of the last lecture

4 )

We now recall that the number of spike count in a certain interval follows
the Poisson distribution.

The spike count in a small bin is then approximated as

(78]

(24,

n! n!

1
1—)LA+§()LA)2+--}

P(NA=n)=

In particular,

P(N, =O)=1[1—)LA+%()LA)2+---]=1—)LA+0(A)

1

P(N,=1)= )LA[I—)LA+§()LA)2 +[= AA+o(A)

P(N, =2)=()LA)2[1—)LA+%()LA)2+---]=0(A)

The probability of having a spike/no spike is an approximation of the
\_ Poisson count distribution for a small time bin. )
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From the feedback of the last lecture

11 0 011 0O0O01TO01TO010O0200
! t+A

P(aspike in [1,1+ A)) = AA +0(A)
P(>1 spikes in [1,t+A)) = 0(A)
P(no spikes in [1,1+A))=1-AA+0(A)

This is discrete-time representation of a Poisson process.
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