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RENEWAL PROCESS 
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Renewal process	


Renewal process: ISIs are independent and identically distributed. 	
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Instantaneous rate of a renewal process	


Point process	


Instantaneous spike-rate	
λ t( )

P a spike in [t, t +Δ)( ) = λ t − t∗( )Δ+o Δ( )

t t + Δ

Instantaneous rate depends on the 
elapsed time from the last spike.	


t∗timing of the last 
spike before t. 	
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Instantaneous rate and ISI-density	


t

Poisson process	
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Exponential ISI distribution 

Constant intensity 

f τ( ) = λe−λτ

P a spike in [t, t +Δ)( ) = λΔ+o Δ( )



　　　 5　 	
Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG	
 Renewal and non-Poisson processes	


Instantaneous rate and ISI distribution	


t

Renewal process	
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What is the relation between ISI and instantaneous rate for a renewal process? 

Other ISI distribution 

Time-dependent rate 
λ τ( )

f τ( )

P a spike in [t, t +Δ)( ) = λ t − t∗( )Δ+o Δ( )
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Conditional intensity function (CIF)	


Spike 

t t +Δ

Conditional intensity function (CIF) 

The CIF is an instantaneous spike-rate. It is also called the hazard function, 
age-specific failure rate, and recovery function.	


Probability that a spike occurs at time t given 
that no spikes are generated for time t. 	


λ t | t∗( ) = lim
Δ→0

P a spike at [t,t+Δ)|no spike in [t∗,t) ( )
Δ

λ t − t∗( )

t∗
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ISI density and CIF	


Spike 

t t +Δ

λ τ( )

f τ( )

f τ( ) = λ τ( )exp − λ u( )du
0

τ

∫#
$%

&
'(

λ τ( ) =
f τ( )

1− f u( )du0

τ

∫

The relation between the ISI density and the conditional intensity function (CIF) 

t∗

τ = t − t∗τ = t − t∗Elapsed time since the last spike: 	
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Conditional intensity and ISI distribution 

Relation between the conditional intensity function and ISI distribution 

λ τ( ) = lim
Δ→0

P τ<X ≤ τ+Δ|X>τ( )
Δ

= lim
Δ→0

P τ<X ≤ τ+Δ,X>τ( )
Δ

1
P X>τ( )

= lim
Δ→0

P τ<X ≤ τ+Δ( )
Δ

1
P X>τ( )

=
f τ( )
F τ( )

=
f τ( )

1− F τ( )

X : Random variable for ISI.	
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Homework 2-1	


λ τ( ) =
− "F τ( )
F τ( )

= −
d
dt
logF τ( )

d
dτ
logF τ( ) = −λ τ( )

F τ( ) = exp − λ u( )du
0

τ

∫#
$%

&
'(

logF τ( )− logF 0( ) = − λ u( )du
0

τ

∫

F τ( ) =1− exp − λ u( )du
0

τ

∫#
$%

&
'(

f τ( ) = λ τ( )exp − λ u( )du
0

τ

∫#
$%

&
'(Obtain the relations, 	


By rewriting the relation and ISI distribution, we obtain 	


Thus, 	


Integrating the both sides of the equality from 0 to τ yields 	


d logF τ( ) = −λ τ( )dτ, or  	


Derivative of the CDF yields the above expression. 	


 Alternative solution: generalize the derivation done in Homework 1-3. 	
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Example: Gamma process	

Gamma process 
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Intensity function	


λ

ISI density	


f τ( ) = 1
Γ κ( )

κ κλτ( )
κ−1
e−κλτISI density 

Intensity function λ τ( ) =
f τ( )

1− F τ( )

κ Shape parameter	


Γ κ( ) = uκ−1e−u du
0

∞

∫

Γ κ( ) Gamma function	


f τ( ) = 1
Γ κ( )

κ κλτ( )
κ−1
e−κλτ
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κ=1.8 

κ=0.8 

κ=1 

Gamma process 

ISI distribution (unit rate)	
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Inverse Gaussian model	
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Inverse Gaussian model 
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Which renewal model for neuronal spikes?	


Likelihood Methods for Neural Spike Train Data Analysis 267
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Figure 9.3
A. Maximum likelihood fits of the exponential (dotted line), gamma (solid line), in-
verse Gaussian (solid bold line) models to the retinal neuron spike trains in Figure
9.2A displayed superimposed on a normalized version of the interspike interval his-
togram in Figure 9.2B. B. Enlargement from (A) of the interspike interval histogram
from 0 to 50 msec to display better the data, and the three model fits over this range.
C. Enlargement from (A) of the interspike interval histogram from 120 to 200 msec
and the three model fits.

Brown et al. (2004) Computational Neuroscience : A 
Comprehensive Approach. CRC Press. 

ISI distribution of spike trains from gold fish retinal ganglion 
cells. Lines are maximum likelihood fits of Poisson, gamma, 
and inverse Gaussian models density.	
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Figure 9.2
A. Thirty seconds of spike times from a retinal ganglion neuron recorded in vitro
under constant illumination. There is an obvious mixture of short and long interspike
intervals. B. Interspike interval histogram for the neural spike train in A. While most
of the spikes occur between 3 to 40 msec, there are many intervals longer than 70
msec.



　　　 14　 	
Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG	
 Renewal and non-Poisson processes	


POINT PROCESSES	


The point processes written by the conditional intensity function	
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Conditional intensity function 

P a spike in [t, t +Δ) |Ht( ) = λ t |Ht( )Δ+o Δ( )
P >1 spikes in [t, t +Δ) |Ht( ) = o Δ( )
P no spikes in [t, t +Δ) |Ht( ) =1−λ t |Ht( )Δ+o Δ( )

Definition of a point process 

Conditional intensity function	


t

Point process	


t + Δ

Spike history	
Ht

Causal point processes are completely characterized by the 
conditional intensity function. 	


Spike history:                               , where       is the number of spikes in (0,t]. 	
Ht = t1, t2,, tNt{ } Nt

t1 t2 t3 tNt
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CIF of point processes	


P a spike in [t, t +Δ) |Ht( ) = λ t |Ht( )Δ+o Δ( )

λ t |Ht( ) = λ

λ t |Ht( ) = λ t( )

λ t |Ht( ) = λ t | tNt( ) = λ t − tNt( )

Spikes are independent each other =  Poisson process 

Spikes are not independent each other =  Non-Poisson process 

Homogeneous Poisson process 

Inhomogeneous Poisson process 

Renewal process 
time of the last spike before t.	
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CIF and conditional ISI distribution	


λ t |Ht( ) =
f t |Ht( )

1− f u |Hu( )dutNt

t
∫

f t |Ht( ) = λ t |Ht( )exp − λ u |Hu( )dutNt

t
∫{ }

Conditional intensity and ISI distribution 

t

Point process	


t +Δ

Spike history	
Ht

t1 t2 t3 tNt

ISI distribution:	
f t |Ht( )

λ t |Ht( )ΔProbability of a spike in               :	
(t,t +Δ]

ISI distribution:  
The density of the next spike at 
time t, given given the spike 
history. 	


f t |Ht( ) t > tNt
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Likelihood function of a point process	


p t1, t2,…, tn∩NT = n( )Δn = f t1( )Δ f ti |Hti( )Δ
i=2

n

∏ ⋅P tn > T |Htn( )

= λ ti |Hti( )Δ
i=1

n

∏ exp − λ u |Hu( )du
0

T
∫'

()
*
+,

p t1, t2,…, tn∩NT = n( ) = λ ti |Hti( )
i=1

n

∏ exp − λ u |Hu( )du
0

T
∫%

&'
(
)*

Likelihood function 

Proof 

f ti |Hti( ) = λ ti |Hti( )exp − λ u |Hu( )du
ti−1

ti∫#
$%

&
'(Here the ISI distribution is	
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TIME-RESCALING THEOREM	


In application to simulating a point process	
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Time-rescaling theorem 

Λ ti( ) = λ u |Hu( )du0

ti∫

Time-rescaling theorem	


By the time-rescaling, any (causal) point process can be 
transformed into a Poisson point process with an unit rate.  

Let	


λ t |Ht( )
0 < t1 < t2 << tn <T be a realization from a point process	


 with a conditional intensity function 	


 Then define the transformation 	
 for 	
i =1,,n.

for	
 t ∈ (0,T ].

 Then the 	
Λ ti( ) are a Poisson process with unit rate. 	
(i =1,,n)

Brown et al. (2001), Daley and Vere-Jones (1988).  	


Time rescaling theorem is used to  
1.  Simulate a (causal) point process. 
2.  Assess goodness-of-fit of the point process model to the data. 
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Example	


Λ t( ) = λ u( )du
0

t
∫Time-rescaling 	


Λ(t)

t

t

λ(t)

t1 2 3 4 5tttt

Λ1

Λ2

Λ3
Λ4

Λ5

λ t( )Time-varying instantaneous rate	


ISI in a rescaled time axis follows an 
unit exponential distribution. 

τ i = Λ ti( )−Λ ti−1( ) = λ u( )du
ti−1

ti∫
τ i ~ g τ( ) g τ( ) = e−τwhere	


Inhomogeneous Poisson process	


f ti | ti−1( ) = dτ i
dti

g τ i( ) = λ ti( )exp − λ u( )du
ti−1

ti∫#
$%

&
'(

ISI density in the original time scale	
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Proof of time-rescaling theorem	


p τ1,τ 2,…,τ n∩τ n+1 > τ T( ) = exp −τ i[ ]
i=1

n

∏
$

%
&

'

(
)exp −τ T( )

τ i = Λ ti( )−Λ ti−1( ) Λi = λ u |Hu( )du0

ti∫ .

c. f .
dΛ ti( )
dti

= λ ti |Hti( )

p τ1,τ 2,…,τ n∩τ n+1 > τ T( ) = p Λ1,Λ2,…,Λn∩NT = n( )

=
dti
dΛii=1

n

∏ p t1, t2,…, tn∩NT = n( )

= exp − λ u |Hu( )du
0

T
∫&

'(
)
*+

= e−τ1e−τ 2e−τ n ⋅e−τT

p t1, t2,…, tn∩NT = n( ) = λ ti |Hti( )
i=1

n

∏ exp − λ u |Hu( )du
0

T
∫%

&'
(
)*

Let the rescaled ISI be 	
 , where 	


We prove that the rescaled ISIs are iid exponential random variables:	


Here we used the density of the spike-timing in original axis as	


By change of variables, we obtain the relation: 	


τT = λ u |Hu( )dutn

T
∫ .We also define 	
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Methods for simulating a point process	


2. Method based on ISI distribution  

Generate ISIs using the inverse function method.  

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

x

ISI distribution	


3. Method based on the time-rescaling theorem 

Generate an exponential random variable.  
Integrate the CIF from 0 to t until it reaches the r.v.  

0 2 4 6 8 10 12 14 16 18 20
0.0

0.5

1.0

1.5

2.0

x

CIF	


At every steps, compute the conditional rate 

Approximate the spike occurrence by a 
Bernoulli process. 

1. Method based on the instantaneous rate 

λ t( )

a spike λ t( )Δ no spike 1−λ t( )Δ

CIF	
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Algotihtm based on time-rescaling theorem 

1.  Generate an exponential random variable via the inverse function method. 

ζ = λ u |Hu( )du
ti−1

η

∫

2. Integrate the conditional intensity function until it satisfies 

3. Let the i-th spike time as  ti =η.

ζ = − logξ ξ, where 	
 is uniform random variable in [0,1].	


0.   Let  i =1

i← i+1Update 	
 , then repeat 1-3 until the spike time becomes larger than T.	


t0 = 0.and	


Constructing a point process via time-rescaling theorem	
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κ=1.8 

κ=0.8 

κ=1 

Example: Gamma process 

ISI distribution (unit rate)	
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Examples of time-dependent renewal processes 

Regular 

Regular 

Irregular 

Random 
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Construction of a time-dependent renewal process 

Λ t( ) = λ u( )du0

t
∫

τ ti | ti−1,λti−1:ti( ) ≡ Λ ti( )−Λ ti−1( )

p ti | ti−1,λti−1:ti( ) = dτdti
g τ |λti−1:ti( )

g τ( ) = 1
Γ κ( )

κ κτ( )
κ−1
e−κτ

r ti | ti−1,λti−1:ti( ) =
p ti | ti−1,λti−1:ti( )

1− p ti | ti−1,λti−1:ti( )dtiti−1

ti∫

(Time-rescaling) 

(Rescaled ISI) 

(Distribution of  
rescaled ISI) 

(Distribution of ISI) 

(Intensity) 
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TIME-RESCALING THEOREM	


In application to assessment of model goodness-of-fit	
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Quantile-Quantile plot 
Quantile-Quantile plot  

Model Quantiles 

F x( ) G y( )

A graphical method for comparing two probability distributions  
by plotting their quantiles against each other. 

Q-Q plot can be used to compare two empirical distributions, two model 
(parametric) distributions, or an empirical distribution against a model distribution. 

F−1 q( ),G−1 q( )( ) 0 ≤ q ≤1.for 

Given the two CDFs,  ,  

the Q-Q plot is a plot given by  

E
m

pi
ric

al
 Q

ua
nt

ile
s 

Q-Q plot of an unit exponential 
distribution against empirical 
distribution of 1000 samples from the 
unit exponential distribution. 

0 1 2 3 4
0
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Q-Q plot for assessing point process models 

bk =
k − 0.5
n

k =1,,n.

Q-Q plot for assessing a point process model.  

Comparison of the rescaled ISIs and an exponential distribution. 

An empirical CDF of the rescaled ISIs. G τ( )
F τ( ) =1− e−τ An exponential distribution function. 

For n ISIs, construct uniform ticks in [0,1]: 

Plot  F−1 bk( ),G−1 bk( )( ) k =1,,n.for 

for 

R. Barbieri et al. / Journal of Neuroscience Methods 105 (2001) 25–3730

close a given model fit is to the data. A slope of 1
suggests close agreement between the model and the
data.

The boxplot summaries across all the cells agree
completely with the findings from the graphical analy-
ses in Fig. 1A–C. The median slope of the IP model in
the 30% range was 0.14 (Fig. 1D), consistent with this
model underestimating the probability density of the
data in this range (Fig. 1A). The median slope of the
IG model in the 30% range was 0.54 (Fig. 1D), because
the IG model fits initially overestimate, then underesti-
mate the probability densities of the data in this range
(Fig. 1A). In contrast, the median slope of the IIG
model fits in the 30% range was 0.79 (25th–75th box-
plot percentile ranging from 0.67 to 0.98) suggesting as
in Fig. 1A, that the IIG model has the best agreement
in this range.

For the 95% range (Fig. 1E) the median slope of the
IP model Q–Q plots is 1.19 (0.96–1.23), consistent with
the IP model fits underestimating the data probability

densities up to approximately the 50th percentile, and
overestimating them from this percentile upward (Fig.
1B). Because the degree of overestimation exceeds the
degree of underestimation, the median slope exceeds 1.
Nearly all the IIG Q–Q plot slopes in the 95% range
are greater than 1, with a median of 1.17. The median
slope of the IG model fits in the 95% range was 0.95
(0.89–0.99) in agreement with Fig. 1B. For all the cells,
the IG fits give the best agreement with the probability
densities of the data in the 95% range.

In the 100% range, the slopes of the IIG model are
closer to 1 than those of either the IP or IG (Fig. 1F).
The median Q–Q plot slopes were 1.03 for the IIG
model, 1.19 for the IG model, and 1.88 for the IP
model. Overall, the IIG model fits are closer to the
probability densities of the data because they agree well
with the data in the 30% range (Fig. 1A), are close in
the 50–95% range (Fig. 1D), and deviate least in the
95th to 100th percentile (Fig. 1C).

Fig. 1. (A–C) Quantile–quantile (Q–Q) plots of the inhomogeneous Poisson (IP) (green lines), inhomogeneous gamma (IG) (blue lines), and
inverse Gaussian (IIG) (red lines) model fits to the spike trains of ten of the 34 place cells analyzed. The 45° line represents exact agreement
between the model and the spike train data. The Q–Q plots are displayed for 0–30th percentile (A); 0–95th percentile (B); and 0–100th percentile
(C). The dotted squares in (B) and (C) indicate respectively the 30th and the 95th percentiles. The IIG model fits the data best in both the 30%
range and the 95–100% percentile range, whereas the IG model fits best in the 30–95% range. (D–F) Box and whiskers plot summaries of the
Q–Q plot slopes for the IP, IG and IIG model fits of all 34 cells for the 30% (D), the 95% (E), and the 30% (F) ranges. The lower border of the
box is the 25th percentile of the distribution and the upper border is the 75th percentile. The white bar within the box is the median of distribution.
The distance between the 25th and 75th percentiles is the interquartile range (IQR). The lower (upper) whisker is at 1.5× the IQR below (above)
the 25th (75th) percentile. All the black bars below (above) the lower (upper) whiskers are far outliers. A slope of 1 for an approximately linear
relation between the empirical and model quantiles suggests close agreement between the model and the data. The boxplot summaries are in strong
agreement with the Q–Q plots in A, B, and C, D and F, show that the IIG model fits describe best the data in the 30 and the 95–100% ranges,
respectively. E shows that the IG model gives the best fits in the 95% range.

R. Barbieri et al. / Journal of Neuroscience Methods 105 (2001) 25–3730

close a given model fit is to the data. A slope of 1
suggests close agreement between the model and the
data.

The boxplot summaries across all the cells agree
completely with the findings from the graphical analy-
ses in Fig. 1A–C. The median slope of the IP model in
the 30% range was 0.14 (Fig. 1D), consistent with this
model underestimating the probability density of the
data in this range (Fig. 1A). The median slope of the
IG model in the 30% range was 0.54 (Fig. 1D), because
the IG model fits initially overestimate, then underesti-
mate the probability densities of the data in this range
(Fig. 1A). In contrast, the median slope of the IIG
model fits in the 30% range was 0.79 (25th–75th box-
plot percentile ranging from 0.67 to 0.98) suggesting as
in Fig. 1A, that the IIG model has the best agreement
in this range.

For the 95% range (Fig. 1E) the median slope of the
IP model Q–Q plots is 1.19 (0.96–1.23), consistent with
the IP model fits underestimating the data probability

densities up to approximately the 50th percentile, and
overestimating them from this percentile upward (Fig.
1B). Because the degree of overestimation exceeds the
degree of underestimation, the median slope exceeds 1.
Nearly all the IIG Q–Q plot slopes in the 95% range
are greater than 1, with a median of 1.17. The median
slope of the IG model fits in the 95% range was 0.95
(0.89–0.99) in agreement with Fig. 1B. For all the cells,
the IG fits give the best agreement with the probability
densities of the data in the 95% range.

In the 100% range, the slopes of the IIG model are
closer to 1 than those of either the IP or IG (Fig. 1F).
The median Q–Q plot slopes were 1.03 for the IIG
model, 1.19 for the IG model, and 1.88 for the IP
model. Overall, the IIG model fits are closer to the
probability densities of the data because they agree well
with the data in the 30% range (Fig. 1A), are close in
the 50–95% range (Fig. 1D), and deviate least in the
95th to 100th percentile (Fig. 1C).

Fig. 1. (A–C) Quantile–quantile (Q–Q) plots of the inhomogeneous Poisson (IP) (green lines), inhomogeneous gamma (IG) (blue lines), and
inverse Gaussian (IIG) (red lines) model fits to the spike trains of ten of the 34 place cells analyzed. The 45° line represents exact agreement
between the model and the spike train data. The Q–Q plots are displayed for 0–30th percentile (A); 0–95th percentile (B); and 0–100th percentile
(C). The dotted squares in (B) and (C) indicate respectively the 30th and the 95th percentiles. The IIG model fits the data best in both the 30%
range and the 95–100% percentile range, whereas the IG model fits best in the 30–95% range. (D–F) Box and whiskers plot summaries of the
Q–Q plot slopes for the IP, IG and IIG model fits of all 34 cells for the 30% (D), the 95% (E), and the 30% (F) ranges. The lower border of the
box is the 25th percentile of the distribution and the upper border is the 75th percentile. The white bar within the box is the median of distribution.
The distance between the 25th and 75th percentiles is the interquartile range (IQR). The lower (upper) whisker is at 1.5× the IQR below (above)
the 25th (75th) percentile. All the black bars below (above) the lower (upper) whiskers are far outliers. A slope of 1 for an approximately linear
relation between the empirical and model quantiles suggests close agreement between the model and the data. The boxplot summaries are in strong
agreement with the Q–Q plots in A, B, and C, D and F, show that the IIG model fits describe best the data in the 30 and the 95–100% ranges,
respectively. E shows that the IG model gives the best fits in the 95% range.
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Barbieri et al. J. Neurosci Methods 2001. 
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Kolmogorov-Smirnov (K-S) test	


iτ
re-scaled ISI that obeys a unit 
exponential distribution. 

( )1 expi iz τ= − −

iz obeys a uniform distribution. 

iz
Re-order      from smallest to largest: 

kzʹ′

CDF 

kzʹ′

kb

1b

1zʹ′

K-S plot	


bn

nzʹ′

1

10

Brown et. al. Neural Comput. 2001 
Barbieri et. al. J. Neurosci. Methods 2001 

CDF of the rescaled ISIs 

bk =
k − 0.5
n

k =1,,n.For n ISIs, construct n uniform ticks in [0,1]: 

Plot  zk,bk( ) k =1,,n.for 

for 

K-S plot 

K-S test  

i =1,2,,n

95 confidence bound are well approximated as 	
bk ±1.36 / n
1/2.

iz
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Examples of K-S plots 	

Likelihood Methods for Neural Spike Train Data Analysis 269
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Figure 9.4
Kolmogorov-Smirnov plots for the fits of the exponential (dotted line), gamma (solid
line), and inverse Gaussian (solid bold line) models to the neural spike train in Figure
9.2. The parallel diagonal lines are the 95% confidence bounds for the degree of
agreement between the models and the spike train data. By this criterion, statistically
acceptable agreement between a model and the data would be seen if the KS plot for
that model fell entirely within the confidence bounds.

Exponential Gamma Inverse Gaussian
λ̂ α̂ λ̂ µ̂ λ̂

θ̂ 0.0325 0.805 0.262 30.76 12.1
CI [0.0283 0.0367] [0.678 0.931] [0.208 0.316] [24.46 37.06] [9.9 14.3]
ISI 30.77±30.77 30.73± 34.74 30.76± 49.0
AIC 8598 8567 8174
KS 0.233 0.2171 0.1063

Table 1: The row is the maximum likelihood estimate θ̂ . CI (95% confidence inter-
val for the parameter); ISI (interspike interval mean and SD); AIC (Akaike’s Infor-
mation Criterion); KS (Kolmogorov-Smirnov statistic).

Brown et al. (2004) Computational Neuroscience : A 
Comprehensive Approach. CRC Press. 

K-S plots for the fits of (homogeneous) Poisson, gamma, 
and inverse Gaussian models fitted to spike trains from 
gold fish retinal ganglion cells.	
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What we learned	


1 
•  Renewal process: Conditional intensity function and ISI density. 

2 
•  Point process written by CIF: conditional ISI distribution, and their 

likelihood.  

3 
•  Time-rescaling theorem (Example of an inhomogeneous Poisson and a 

proof). 

4 
•  How to simulate a point process via the time-rescaling theorem. 

(Examples of inhomogeneous renewal processes). 

5 
•  How to assess a point process model via the time-rescaling theorem. 

(Q-Q plot and K-S test) 
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Tomorrow, we will learn	


1 
•  Exponential family of distributions and generalized 

liner model. 

2 
•  Discrete-time likelihood of conditional Bernoulli and 

Poisson distributions. 

3 
•  GLM framework for a continuous-time point process. 

4 
•  Review of a paper by Truccolo et al. Focused on methods 

for model validation. 
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From the feedback of the last lecture	


0.5 1.0 1.5 2.0

1

2

3

4

lim
Δ→+0

o Δ( )
Δ

= 0

P a spike in [t, t +Δ)( ) = λΔ+o Δ( )
P >1 spikes in [t, t +Δ)( ) = o Δ( )

P no spikes in [t, t +Δ)( ) =1−λΔ+o Δ( )

o Δ( ) = Δ2

lim
Δ→+0

Δ2

Δ
= lim

Δ→+0
Δ = 0

o Δ( )What is           ? 	

Example	


t t + Δ
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From the feedback of the last lecture	


1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0 

If you do not have	
 o Δ( ) = 0

P a spike in [t, t +Δ)( ) = λΔ

P >1 spikes in [t, t +Δ)( ) = 0

P no spikes in [t, t +Δ)( ) =1−λΔ

o Δ( )

This is a Bernoulli process.	


, namely 	
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From the feedback of the last lecture 

P N
Δ
= n( ) =

λΔ( )
n

n!
e−λΔ =

λΔ( )
n

n!
1−λΔ+ 1

2
λΔ( )

2
+

#

$
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&

'
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P N
Δ
= 0( ) =1 1−λΔ+ 12 λΔ( )

2
+

!

"
#

$

%
&=1−λΔ+o Δ( )

P N
Δ
=1( ) = λΔ 1−λΔ+ 12 λΔ( )

2
+

!

"
#

$

%
&= λΔ+o Δ( )

P N
Δ
= 2( ) = λΔ( )

2
1−λΔ+ 1

2
λΔ( )

2
+

!

"
#

$

%
&= o Δ( )

The probability of having a spike/no spike is an approximation of the 
Poisson count distribution for a small time bin.  

In particular,  

The spike count in a small bin is then approximated as  

We now recall that the number of spike count in a certain interval follows 
the Poisson distribution. 	
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From the feedback of the last lecture	


1 1 0 1 1 1 0 1 2 0 0 0 0 0 1 0 0 0 0 

P a spike in [t, t +Δ)( ) = λΔ+o Δ( )
P >1 spikes in [t, t +Δ)( ) = o Δ( )

P no spikes in [t, t +Δ)( ) =1−λΔ+o Δ( )

This is discrete-time representation of a Poisson process.	


t t + Δ


