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ABSTRACT

A classical tool for estimating the neuronal spike rate is a peri-stimulus time histogram (PSTH)
constructed from spike sequences aligned at the onset of a stimulus repeatedly applied to an
animal. We have recently established a method for selecting the bin size, so that the PSTH
best represents the unknown underlying rate [1]. The goodness of the fit we adopted as the
optimization principle is minimizing the mean integrated squared error (MISE) between the
underlying rate λt and the PSTH λ̂t,

MISE =
∫ b

a
E(λt − λ̂t)2dt, (1)

where E refers to the expectation with respect to the spike generation process under a given
time-dependent rate λt. The method allows us to minimize the MISE from spike count statistics
alone, without knowing the underlying rate.

In this contribution, we consider a kernel rate estimator as λ̂t and suggest a method to select the
width of a kernel under the MISE criterion. Generally, the cross-validation method is applicable
to the least squares minimization [2, 3]. Here, we estimate the MISE fully utilizing the Poissonian
nature of spikes, as we have done in the PSTH optimization. The Poissonian assumption holds
in the limit of large number of trials, because spikes repeatedly recorded from a single neuron
under identical experimental conditions are in the majority mutually independent.

For a small number of spike sequences generated from modestly fluctuating underlying rate,
the optimal kernel width may become comparable to the observation period. This phenomenon,
similar to what we have observed in the PSTH optimization [4], indicates that more experimental
trials are needed if one wishes to uncover the time-dependent rate. We also construct a method
for estimating the number of additional experimental trials needed to analyze the data with the
resolution we deem sufficient.

Selection of the Kernel Width We consider independently and identically obtained n spike
sequences, which contain N spikes as a whole. Due to the general limit theorem for the sum
of independent point processes, a superposition of the spike sequences can be regarded as being
drawn from a time-dependent Poisson point process. We define the superimposed sequence as
xt = n−1

∑N
i=1 δ (t− ti), where ti is the timing of the ith spike. δ(t) is the Dirac delta function.

An estimator λ̂t is constructed by smoothing the point process by a kernel kw(t) of the bandwidth
w: λ̂t =

∫
kw(t− s)xs ds.

We wish to obtain a kernel function that minimizes the MISE (Eq. 1). The integrand of the
MISE is decomposed into three parts: λ2

t − 2λtEλ̂t + Eλ̂2
t . Since the first component does not

depend on the choice of a kernel, we subtract it from the MISE and define a cost function as a
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Table 1: A Method for Selecting a Bandwidth of a Kernel Function

(i) Superimpose all the n spike sequences. Obtain a series of spike times {ti}N
i=1

in [a, b]. N is the total number of spikes.
(ii) Compute the cost function of a kernel kw (t) as

Ĉn (w) = − 4
n2

∑

i<j

kw (ti − tj) +
1
n2

∑

i,j

ψw,a,b (ti − tj) ,

where ψw,a,b (t) ≡ ∫ b
a kw (s) kw (s + t) ds is the correlation function (∗).

(iii) Repeat ii while changing w to search for w∗ that minimizes Ĉn(w).

(∗) For a Gaussian kernel kw (t) = 1√
2πw

exp
(
− t2

2w2

)
,

ψw,a,b(t) = 1√
π4w

exp
(
− t2

4w2

){
erf

(
2b+t
2w

)− erf
(

2a+t
2w

)}
.

function of the kernel, or its bandwidth w,

Cn(w) ≡ MISE−
∫ b

a
λ2

t dt = −2
∫ b

a
λtEλ̂t dt +

∫ b

a
Eλ̂2

t dt. (2)

From a general decomposition rule of a covariance of two random variables, we obtain the
relation,

∫ b

a
λtEλ̂t dt =

∫ b

a
E[xtλ̂t] dt−

∫ b

a
E(xt − Ext)(λ̂t −Eλ̂t) dt

= E

∫ b

a
xtλ̂t dt− kw(0)

n
E

∫ b

a
xt dt. (3)

To obtain the last equality, we used the assumption that the spikes are independent each other
(an assumption of a Poisson point process). Hence from sample sequences, the cost function is
estimated as

Ĉn(w) =
2kw(0)

n

∫ b

a
xt dt− 2

∫ b

a
xtλ̂t dt +

∫ b

a
λ̂2

t dt

=
2kw(0)

n2
N − 2

n2

N∑

i=1

N∑

j=1

kw (ti − tj) +
1
n2

N∑

i=1

N∑

j=1

ψw,a,b (ti − tj) , (4)

where ψw,a,b(t) is given by

ψw,a,b(t) ≡
∫ b

a
kw (s) kw (s + t) ds. (5)

We summarize the method for selecting the width of a symmetric kernel function as Table 1.
Figure 1 displays application of our method to the spike data of an MT neuron responding to
a random dot stimulus [5]. In this example, we changed the number of spike sequences used to
estimate the time-dependent rate.

Extrapolation of the cost function Here we provide the method to estimate how many
additional experimental trials are needed to make an optimized rate estimate with the required
resolution. Suppose we have n spike sequences. The superposition of n spike sequences is
denoted as x

(n)
t . The kernel estimator is denoted as λ̂

(n)
t .
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Figure 1: Optimization of a kernel estimate for spike-rate of an MT neuron (j024 in nsa2004.1
[5]) with a Gaussian kernel (exp

(−t2/2w2
)
/
√

2πw), according to the method in Table 1. A: Cost
functions of n = 1, 5, and 30 spike sequences. B, C, and D: (Top) Optimized time-dependent
rates. (Bottom) Spike sequences.

We wish to compute the cost function for m spike sequences. It is easily proved that the cost
function for m spike sequences is written as

Cm(w) =
(

1
m
− 1

n

)∫ b

a
dt

∫
kw (t− s)2 Ex(n)

s ds + Cn(w), (6)

where Cn(w) is given by Eq. 2. To obtain Eq. 6, we used a relation,
∫

E(λ̂(m)
t − Eλ̂

(m)
t )2 dt =

m−1
∫

dt
∫

kw (t− s)2 Ex
(m)
s ds, and replaced Ex

(m)
s with Ex

(n)
s . Hence the cost function for m

spike sequences is estimated from a sample of n spike sequences as

Ĉm [w |n] =
(

1
m
− 1

n

)
1
n

N∑

i=1

∫ b−ti

a−ti

kw (t)2 dt + Ĉn(w). (7)

The extrapolation method is summarized as Table 2. Figure 2 demonstrates the application of
the extrapolation method to the spike data [5]. In Figure 2-b, the optimal widths were estimated
with the extrapolated cost functions computed from the first two spike sequences (Solid line).
They are close to the optimal kernel widths obtained by the method in Table 1 (Dots). With this
plot, experimentalists can estimate how many additional experimental trials must be performed
in order to achieve the resolution they deem sufficient.
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Table 2: A Method for Extrapolating the Cost Function

(A) Compute the cost function Ĉn (w) as in Table 1.
(B) Construct the extrapolated cost function:

Ĉm (w |n) =
(

1
m
− 1

n

)
1
n

N∑

i=1

ψw,a−ti,b−ti (0) + Ĉn (w) .

(C) Repeat B while changing w to search for w∗ that minimizes Ĉm (w |n).
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Figure 2: Application of the extrapolation method to spike data of an MT neuron (the data
as in Fig. 1 [5]). A: A cost function of the first two spike sequences (Solid). Extrapolated
cost functions for m = 30 and 60 computed from the first two spike sequences (Dashed and
Dotted). B: Estimated optimal kernel widths of n = 1 through 60 spike sequences, according to
the method in Table 1 (Dots). A solid line is the estimated optimal widths computed from the
first 2 spike sequences, according to the method in Table 2.
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