
 

 1

Title: 

Simultaneous silence organizes structured higher-order interactions in neural populations 

 

Author names and affiliations: 

Hideaki Shimazakia, Kolia Sadeghib, Tomoe Ishikawac, Yuji Ikegayac,d, and Taro Toyoizumia,e 5 
a. RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan 

b. Commonwealth Computer Research Inc., 1422 Sachem Pl., Unit #1, Charlottesville, VA 22901, USA 

c. Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, 

Japan 

d. Heart to Heart Science, Center for Information and Neural Networks, 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan 10 
e. Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8503, 

Japan 

Corresponding author: 

Hideaki Shimazaki, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. Tel: +81-48-467-

9670 Email: shimazaki@brain.riken.jp  15 
Taro Toyoizumi, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan. Tel: +81-48-467-9644 

Email: taro.toyoizumi@brain.riken.jp    



 

 2

Abstract 

Activity patterns of neural population are constrained by underlying biological mechanisms. These patterns are 

characterized not only by individual activity rates and pairwise correlations but also by statistical dependencies 

among groups of neurons larger than two, known as higher-order interactions (HOIs). While HOIs are ubiquitous in 

neural activity, primary characteristics of HOIs remain unknown. Here, we report that simultaneous silence (SS) of 5 
neurons concisely summarizes neural HOIs. Spontaneously active neurons in cultured hippocampal slices express SS 

that is more frequent than predicted by their individual activity rates and pairwise correlations. The SS explains 

structured HOIs seen in the data, namely, alternating signs at successive interaction orders. Inhibitory neurons are 

necessary to maintain significant SS. The structured HOIs predicted by SS were observed in a simple neural 

population model characterized by spiking nonlinearity and correlated input. These results suggest that SS is a 10 
ubiquitous feature of HOIs that constrain neural activity patterns and can influence information processing. 
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Introduction 
Information in the brain is represented by the collective spiking activity of multiple neurons 1. Activity patterns of observed 

neurons are highly structured due to various underlying biological mechanisms including direct anatomical connections 2,3, 

indirect connections mediated by unobserved neurons 4,5, and intrinsic nonlinearity of individual neurons 6,7. However, 

exploration of this structure is non-trivial due to limited data size in comparison to possible combinations of activity patterns 5 
that grow exponentially with population size.  

 

To infer the structure of neural activity patterns from limited amount of data, the maximum entropy principle has been 

successfully applied 8,9. Under this principle, the probability distribution of activity patterns is estimated to be the least 

structured distribution that is consistent with a set of observed activity statistics. This maximum entropy distribution is 10 
statistically characterized by parameters of different orders, where the orders refer to the numbers of subset neurons that these 

parameters constrain. The first-order parameters characterize activity rates of individual neurons and the second-order 

parameters characterize the deviations of pairwise correlations from the chance coincidence expected from the individual 

activity rates. The second-order parameters are referred to as pairwise interactions. More generally, the k-th (k=3, 4, …) order 

interactions adjust simultaneous activation rates of k neurons from the expectation based on interactions up to the (k-1)-th 15 
order. Interactions beyond the pairwise interactions (k>2) are collectively termed higher-order interactions (HOIs) 10,11. 

Notably, these interactions refer to statistical dependency of neurons, and do not necessarily involve anatomical connections.  

 

In earlier studies, individual activity rates and pairwise correlations alone could explain ~90% of variability in activity 

patterns of small populations of retinal ganglion cells 8,9 and cortical neurons 12,13. However, this does not exclude the 20 
existence of HOIs or limit their contribution to information processing. Indeed, the addition of HOIs to a statistical model 

significantly improved the goodness-of-fit to neural activities obtained from multi unit activity 14,15, single unit activity 5,16–20, 

and local field potential 21,22 in both in vivo and in vitro preparations. Furthermore, HOIs are relevant in neural information 

coding 14,16,18,23. However, previous studies have not identified a key feature in HOIs that summarizes the principal role of 

seemingly diverse HOIs.  25 
 

One of the most striking features of neural population activity is simultaneous silence (SS). The spiking activity of individual 

neurons is known to be sparse 24. As a result, the most commonly observed activity pattern in typical networks is the pattern 

in which all neurons are silent. Does SS involve HOIs? Indeed, departures from the level of expected SS from individual 

activity rates and pairwise correlations (excess SS) were empirically reported previously 16–20. However, the significance of 30 
SS in characterizing HOIs of the population activity is not well understood.  

Here, we examine SS in population activity of the hippocampal CA3 networks in cultured slices. Previous studies 

demonstrated that CA3 pyramidal cells in the organotypic slice cultures are wired with an in vivo-like connection probability 

of 15-30% 3, and their spontaneous spike rates are closer to those of in vivo hippocampal neurons 25, compared to neurons in 

acute slice preparations. We demonstrate that most local groups of hippocampal neurons that possess HOIs express excess SS. 35 
A single parameter that quantifies SS accounts for about 20% of the variability in population activity patterns that is 
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produced by numerous HOIs. We then confirm specific oscillatory structure of HOIs predicted from the SS. Through 

modeling, we also demonstrate that correlated population activity caused by spiking nonlinearity and correlated input exhibits 

the same structure of HOIs, and that this structure conveys information of input. These results suggest that neurons are 

operating in a unique regime where they are constrained to be silent simultaneously.  

Results 5 
Simultaneous silence and HOIs of hippocampal neurons. We analyzed the spontaneous spiking activity of putative 

neurons in the hippocampal CA3 area of organotypic slice cultures, measured by the Calcium imaging method. Slices were 

prepared from postnatal day 7, and then cultivated from day 7 to 14 (see Methods). Neuronal activity was detected by onsets 

of calcium transients 3,26–28, which provided event-timing data with a resolution of 100 ms. Fig. 1A and B display an example 

of population event activity of a single slice culture, and spatial positions and activity rates of individual neurons. We 10 
analyzed ݊ = 20 slices in total, and found the following features. First, activity rates of the neurons from all slices were 

distributed close to a log-normal distribution (Fig. 1C), similarly to spiking rates of in vivo hippocampal CA3 neurons of 

awake rodents 29,30. The rates of calcium events in individual cells computed from 2122 neurons in 20 slices were 0.073 ± 

0.097 (mean ±SD events/s; median 0.035, interquartile range 0.01–0.097 events/s). Notably, event rates of neurons in 

cultured slices were close to those under an awake in vivo condition 25. Second, the activity of pairs of neurons was only 15 
weakly correlated (Fig.1D). Average correlation coefficient was 0.033 ±0.065 SD (detection in a 100 ms window). A cross-

correlogram revealed that, on average, the activity of pairs of neurons was not correlated after a ~400 ms timelapse (Fig.1D 

inset). Third, intracellular voltage recordings under the same experimental conditions all reveal uni-modal distributions of 

membrane potentials (Fig. 1E). Hence, no obvious sign of a superposition of UP and DOWN states was detected.  

To analyze the correlated activity of multiple neurons, 50 groups of ܰ = 10 neighboring neurons were selected from each of 20 
20 slices (see an example group of neurons shaded in pink in Fig.1B and events marked in red in Fig.1A), for a total of 1000 

groups of 10 nearest-neighbor cells. The centers of groups were sampled according to the spatial density of cells in the CA3 

area (See Methods). The average ‘radius’ of the 1000 groups was 36.6 (±13.4 SD) μm, where the radius of a group was 

computed as the mean Euclidean distance of its cell positions from the group’s center position. We then represented the 

activity of the ith neuron (݅ = 1, ⋯ ,10) in a time window by a binary variable ݔ௜ ={0,1},  where ‘1’ denotes an active state 25 
in which at least one event occurred, and  ‘0’ represents an inactive, or ‘silent’,  state in which no events occurred (Fig.1F). 

We used a 400 ms time-window in the subsequent analyses to incorporate the temporal correlation observed in the cross-

correlogram (c.f. the shaded interval in Fig. 1D inset).  

To examine if hippocampal neurons exhibit collective activity beyond what can be explained by pairwise interactions, we 

compared the activity patterns of a group of observed neurons with those predicted from a pairwise maximum entropy model 30 
8,9,31, ଶܲ(ݔଵ, ⋯ , (ேݔ ∼ expൣ∑ ௜௜ݔ௜ߠ + ∑ ௝௜ழ௝ݔ௜ݔ௜௝ߠ ൧. This model provides the least structured probability distribution that is 

consistent with the observed activity rates of individual neurons and correlations between pairs of neurons. The parameters {ߠ௜,  ௜௝} were adjusted to fit these statistics. We call this model a pairwise model hereafter. First, we examined if the neuronsߠ

exhibited SS beyond that predicted by the pairwise correlations. To this end, we compared the observed probability of the 



 

 5

pattern in which all of 10 neurons are simultaneously silent with its probability according to the pairwise model. Figure 2A 

displays a distribution of percentage deviation of observed SS probabilities from the prediction of the pairwise model, {ܲୢ ୟ୲ୟ(0, ⋯ ,0) − ଶܲ(0, ⋯ ,0)}/ ଶܲ(0, ⋯ ,0), where ܲୢ ୟ୲ୟ(0, ⋯ ,0) is the observed probability of SS. In some groups, the 

pairwise model tended to underestimate the occurrence probability of SS of 10 neurons. This discrepancy has to be explained 

by HOIs in the data.  5 
To examine the contribution of HOIs to population activity, we computed the fraction of entropy that is explained by HOIs. 

This fraction, referred to as the percentage entropy margin for HOIs, is quantified as ∆ୌ୓୍= ଶܪ) −  ଶ isܪ ଶ, whereܪ/(ୟ୲ୟୢܪ

the entropy of the pairwise model and ୢܪୟ୲ୟ is the entropy of the observed histogram of population activity patterns. We call ୢܪୟ୲ୟ the data entropy in the following. The data entropy is characterized by all of the first, second, and HOIs. Therefore, the 

difference between ܪଶ and ୢܪୟ୲ୟ must be explained by HOIs. We found that the distribution of ∆ୌ୓୍ exhibited a long tail (Fig. 10 
2B). This indicates that there were a noticeable number of groups in which HOIs played a much stronger role in shaping 

population activity. Finally, we explored the relation between the contributions of HOIs to the probability of SS. We found 

that the groups expressing higher/lower probabilities of SS than the pairwise model coincided with the groups possessing 

large entropy margins for HOIs (Fig. 2C). The positive correlation between these two values in Fig. 2C (Spearman’s rank 

correlation coefficient 0.69, p<0.001) implies that a significant portion of the HOIs of the CA3 neurons may be explained by 15 
the SS. The rank correlation coefficient was higher (0.92) and statistically significant if we analyze non-overlapping groups.   

Simultaneous silence is a ubiquitous feature of HOIs.  To directly examine the contribution of the SS to the entropy 

explained by HOIs, we constructed a maximum entropy model that augments the pairwise model with a single additional 

term to account for the probability of SS observed in the data. We refer to this model as the SS model: 

ୗܲୗ(ݔଵ, ⋯ , (ேݔ ∼ exp ቈ෍ ௜௜ݔ௜ߠ + ෍ ௝௜ழ௝ݔ௜ݔ௜௝ߠ + ଴ߠ ෑ (1 − ௜)ே௜ୀଵݔ ቉. (1) 

Here a single parameter, ߠ଴, was introduced to account for the probability of SS of ܰ neurons. Positive or negative ߠ଴ 20 
indicates that the probability of SS of all neurons is more or less than predicted by the pairwise model, respectively. 

Importantly, this new SS term is equivalent to adding specific structured HOIs into the pairwise model. By expanding the SS 

term into the standard HOI-coordinates, we obtain ߠ଴ ∏ (1 − ௜)௜ݔ = ଴ߠ − ଴ߠ ∑ ௜௜ݔ + ଴ߠ ∑ ௝௜ழ௝ݔ௜ݔ − ଴ߠ ∑ ௞௜ழ௝ழ௞ݔ௝ݔ௜ݔ ଴ߠ+ ∑ ௟௜ழ௝ழ௞ழ௟ݔ௞ݔ௝ݔ௜ݔ − ⋯. Hence, increasing or decreasing the total period of quiescence is equivalent to introducing a single 

parameter to the HOIs with alternating signs for different orders of interaction. In addition to capturing individual activity 25 
rates and pairwise correlations, the SS model explores this 1-dimensional structure in the high-dimensional space of HOIs to 

fit the rate of SS. We fitted the SS model to the same 1000 groups of 10 hippocampal neurons obtained from 20 slices. Note 

that, in each group, the fitted first and second order parameters of the SS model are generally different from those of the 

pairwise model because of the newly introduced SS term.  

We compared goodness-of-fit of the SS model with that of the pairwise model (Fig. 3A). The ordinate of the panels 30 
represents percentage differences between observed and predicted SS probabilities of sub-groups of ݎ(= 1, ⋯ ,10) neurons by 

the two models (Left, the pairwise model; Right, the SS model). By definition, the pairwise model adjusts the silence rates of 
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individual neurons (equivalent to 1 minus activity rates, ݎ = 1) and pairs (ݎ = 2) (Fig. 3A Left panel). However, the pairwise 

model fitted to the data underestimated probabilities of SS for larger sub-groups of neurons. This means that many sub-

groups of hippocampal neurons expressed SS more often than chance as predicted from their activity rates and the pairwise 

correlations. In contrast, the SS model additionally accounts for the probability of SS of all 10 neurons in a group (see the 

complete match of the data and prediction at ݎ = 10 in addition to ݎ = 1, 2 in Fig. 3A Right panel). Order of magnitude 5 
reductions in the differences were observed in the SS of many sub-groups (ݎ = 3, ⋯ ,9). (Note the scale difference in the Left 

and Right panels.)  

We tested the excess or paucity of SS using the SS model against a null hypothesis of no such activity (i.e., the hypothesis 

that the pairwise model is sufficient to characterize the data). Here, we used ߯ଶ-tests 11 with multiple comparison correction 

using the Benjamini-Hochberg-Yekutieli method with a false discovery rate of 0.05 to assess if the SS term significantly 10 
improved the fitting in each group (See Methods). Of 1000 groups, 156 groups (16%) from 10 slices rejected the null 

hypothesis (Fig. 3B). We call these groups that exhibit excess or paucity of SS the SS groups. Statistical properties of the SS 

as well as non-SS groups were summarized in Table 1. Indeed, most of the groups (68%, 133 groups out of 197) that 

exhibited relatively large margins of entropy for HOIs (∆ୌ୓୍>3%) were the SS groups. Note that, at this point, each of the SS 

groups could have had either significantly positive or negative ߠ଴. It turned out that 154 out of the 156 SS groups exhibited 15 
significantly positive ߠ଴ (Fig. 3B Right inset). Thus, virtually all the SS groups expressed significantly larger probability of 

SS than the corresponding pairwise model. In these groups, the total number of bins for which all neurons were quiet was 

larger than expected by the corresponding pairwise model. In other words, activity was confined to a smaller number of bins. 

Hence, we conclude that the population activity of most groups exhibiting HOIs (∆ୌ୓୍>3%) was significantly sparse in time. 

Note that the observed fraction of SS groups was robust to the number of groups sampled from each slice but typically 20 
increased with the size of these groups (Fig. 3C). 

Finally, we examined the relation between the percentage entropy margin for HOIs, ∆ୌ୓୍, and the percentage of the HOI 

entropy explained by the SS. The latter entropy was computed as ∆ୗୗ= ଶܪ) −  ୗୗ is the entropy of the SSܪ ଶ, whereܪ/(ୗୗܪ

model. Figure 3D displays scatter plots of these values for all groups. As predicted from Fig. 2C, we observe significant 

positive correlation between ∆ୌ୓୍ and ∆ୗୗ (Spearman’s rank correlation coefficient 0.52, p<0.001). The dashed lines are 25 
isoclines of a constant ratio ߙ = ଶܪ) − ଶܪ)/(ୗୗܪ −  ୟ୲ୟ). This ratio describes the fraction of entropy explained by the SS inୢܪ

the entropy margin for HOIs. As expected, the SS groups (filled circles) typically had large ߙ. Figure 3E displays a 

distribution of ߙ for the groups that expressed large margin for HOIs (197 groups with ∆ୌ୓୍>3%). In these groups, the single 

higher-order parameter of the SS explained 18.3% (interquartile range, 4.7-31%) of the entropy for HOIs (Fig. 3C). Since we 

have only added a single parameter in the high-dimensional space of HOIs, this result implies that the SS comprises one 30 
important characteristic of the HOIs. 

In order to assess biases that may be caused by limited samples in our data sets, we repeated our analysis using two 

alternative data sets (Supplementary Fig. S1 online). First, we analyzed only one half of the data by taking every other bin of 

the original population activity patterns for each slice. Second, we analyzed bootstrapped population activity patterns, where 

the same number of patterns as the original data were resampled with replacement in each slice. These two data sets contain 35 
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less variations of population activity patterns than  the original data. For the both data sets, the fraction of SS groups was 

smaller than the 16% found in Fig. 3B. The fraction of the HOIs explained by SS also decreased to less than a half of 18% 

found in Fig. 3E. Because we did not overestimate these quantities after subsampling and resampling, it is unlikely that our 

original estimation (16% exhibits significant SS; 18% of HOIs is explained by SS) overestimated the fractions expected from 

a larger number of samples. In sum, the analyses confirm significant SS in the data, and predict the presence of the 5 
alternating signs of HOIs, a possibility we directly test now. 

Alternating signs of HOIs predicted by SS. If SS is a major feature of the HOIs, we expect to find HOIs whose signs 

alternate depending on the orders of interaction (c.f. the expansion of the SS term). In order to directly examine the structure 

of HOIs, we consider a simple maximum entropy model that includes a single global parameter for each order of HOIs (20): 

୦ܲୌ୓୍ (ݔଵ, ⋯ , (ଵ଴ݔ ∼ exp ቈ෍ ௜௜ݔ௜ߠ + ෍ ௜మ௜భழ௜మݔ௜భݔ௜భ௜మߠ + ෍ ௞ߠ̅ ෍ ௜భݔ ⋯ ௜ೖ௜భழ⋯ழ௜ೖݔ
ଵ଴௞ୀଷ ቉, (2) 

where ̅ߠ௞  (݇ = 3, 4, ⋯ ,10) is a single parameter for the ݇th order HOIs. The term for the ݇th order interaction parameterized 10 
by a parameter ̅ߠ௞  sums all combinatorial interactions of ݇ neurons among 10 neurons. We call this model the homogeneous 

HOI (hHOI) model. The hHOI model fitted to the data reproduces the histogram of the number of active neurons in each time 

bin 14,19,20,32.  

In these data sets (∆ୌ୓୍>3%), the hHOI model explained 24% of the variability in population activity due to HOIs 

(interquartile range 11-34%) as assessed by (ܪଶ − ଶܪ)/(୦ୌ୓୍ܪ −  ୦ୌ୓୍ is the entropy of the hHOI model. 15ܪ ୟ୲ୟ), whereୢܪ
This result indicates prevalent heterogeneity in the HOIs. The result also upper bounds the fraction of entropy for HOIs that 

could be explained by the single SS term. We then investigated how much of this entropy is actually explained by the SS 

term. Figure 4A displays relations between the percentage entropy margin explained by the hHOI model, ∆୦ୌ୓୍= ଶܪ) ߚ ଶ, and by the SS model, ∆ୗୗ. Similarly to Fig. 3D, the dashed lines are isoclines ofܪ/(୦ୌ୓୍ܪ− = ଶܪ) − ଶܪ)/(ୗୗܪ −  ,(୦ୌ୓୍ܪ

which quantifies the fraction of entropy explained by the SS in the entropy margin for the homogenous HOIs. Figure 4B 20 
shows a distribution of ߚ for the groups exhibiting HOIs (∆ୌ୓୍>3%). In these groups, the single SS term explained 80% of 

the entropy for homogeneous HOIs (interquartile range 48-92%). From this result, we conclude that SS constitutes the 

dominant structure of the homogeneous HOIs.  

We next directly visualize the structure of homogeneous HOIs. Figure 4C displays distributions of the homogeneous HOI 

parameters, ̅ߠ௞  of the hHOI models. (We only show the parameters for ݇ = 3, 4, 5, 6 although we fitted hHOIs up to the 10th 25 
order). The homogeneous HOI parameters up to the fifth order but not higher were significantly different from zero (two 

tailed sign test). The set of the homogeneous HOI parameters, (̅ߠଷ , ସߠ̅ , ହߠ̅ ), from each group fell in a particular quadrant in 

the 3-dimensional space (negative triple-wise, positive quadruple-wise, and negative quintuple-wise interactions, Fig. 4C), 

exhibiting an obviously biased direction. (If the set of homogeneous HOI parameters randomly fell in any quadrant, the 

probability that the observed number of groups (~54% of the groups) would fall in any single quadrant would be less than 30 10ିଵହ). Thus the structured homogeneous HOIs found up to the 5th order contributed to the excess SS found in 68% of the 
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groups with ∆ୌ୓୍> 3%. These results demonstrate that the structured HOIs with alternating signs are an attribute of excess 

SS in local networks of hippocampal neurons. 

Simultaneous silence relies on network inhibition. Several different biological mechanisms may underlie the observed 

structure of HOIs. One such mechanism may be the inhibitory networks in the hippocampal CA3 area. To test this hypothesis, 

we examined population activity under bath application of GABAA receptor antagonist picrotoxin (PTX) (Fig. 5A). When 5 
fast GABAA mediated inhibitory networks were blocked by PTX, activities of observed neurons nearly completely 

synchronized with each other (Fig. 5B). The cross-correlogram exhibited a sharper peak (Fig. 5B inset) than that in the 

control (cf. Fig. 1C), much shorter than the 400 ms time window used to analyze the control condition. Nonetheless, we used 

the same window-size, 400 ms, to test for the deviation of SS from the pairwise model, except in Fig. 6D, where we explored 

the dependency on bin sizes. Table 1 summarizes activity rates, correlation coefficients, and probabilities of SS computed 10 
using the 400 ms bin under control and PTX conditions. The average probability of SS under the PTX conditions was much 

larger than that under the control condition. However, this frequent SS is expected from the high pairwise correlation 

coefficients observed under the PTX conditions.  Indeed, the entropy explained by HOIs was greatly diminished in the PTX 

data, indicating that the pairwise model adequately explained population activity in almost all groups under blockade of 

inhibition (Fig. 5C). Accordingly, the percentage of groups that exhibited significant SS beyond the pairwise model was 15 
considerably reduced from 16% down to 4% (Fig. 5C, red). The considerable reduction of SS groups was observed whenever 

the window size larger than 200 ms was used in order to thoroughly cover the synchronous events (Fig. 5D).  We thus 

concluded that an inhibitory network is necessary for neurons to produce both frequent SS and weak pairwise correlations; 

the conjunction of both can only be explained by HOIs.  

Simultaneous silence emerges in a population of thresholding units that receive correlated input. Finally, we 20 
demonstrated that a simple model of neural population reproduces the structured HOIs with alternating signs with respect to 

different orders of interaction observed in the spontaneous activity of hippocampal neurons under the control conditions. A 

population model known as the Dichotomized Gaussian (DG) model 33–36 simulates a population of neurons that receive 

correlated Gaussian inputs, where each neuron produces a binary output in response to its input by simple thresholding (Fig. 

6A, See Methods). Despite the substantial simplification, the spiking mechanism is similar to the one assumed in networks of 25 
balanced excitatory and inhibitory neurons: the mean input to each neuron is typically smaller than the threshold and, 

therefore, spikes are induced by fluctuations in the input. The DG model has been reported to reproduce neural activity 

patterns better than the pairwise model 22. Figure 6B displays simulated DG models using different strengths of input 

correlations (Fig. 6B), including one that produces output correlations similar to those found in experimental observations 

(see Table 1). The population activity exhibited asynchronous spiking activity. We numerically computed the HOIs of the 30 
DG model for ܰ = 10 (See Methods). The HOIs showed clear alternation in signs with respect to the successive orders of 

interaction (Fig. 6C) and demonstrated excess SS (Fig. 6D). These results show that the experimentally observed SS with 

structured HOIs can arise from the conjunction of two ubiquitous biological features, i.e., correlated input and spiking 

nonlinearity. Further, we demonstrate that SS can contain rich information of inputs provided to the observed population of 

neurons. Figure 6E compares the signal-to-noise ratio for estimating the input correlation based on specific features of 35 
population activities – activity rates and pairwise correlations (Rate+Pair), SS in addition to activity rates and correlations 
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(Rate+Pair+SS), and joint activity rates of all orders (Full). The signal-to-noise ratio, which is also called the linear Fisher 

information 37–39, quantifies the accuracy of estimating a small change in an input parameter by an optimal liner decoder (see 

Methods). The result shows that measuring SS in addition to activity rates and correlations can provide nearly full 

information available from the observation of all statistics. The results were qualitatively the same when an input mean (or a 

threshold level) was estimated instead of input correlation. 5 
Discussion 
We investigated the structure of HOIs in spontaneous activity of neurons in the CA3 area of organotypic hippocampal slice 

cultures. Most groups (~70%) of neurons that expressed significant HOIs (∆ୌ୓୍> 3%) also exhibited excess SS (Fig. 3), and 

SS alone could account for ~20% of the entropy explained by HOIs in these groups. This result predicts significantly biased 

homogeneous HOIs with alternating signs at successive orders of interaction and our data analysis confirmed this prediction 10 
(Fig. 4). We also found that SS explained 80% of the entropy due to structured homogeneous HOIs.  

 

SS was robustly observed across a range of time-bins (Fig. 5D) and sizes of neural populations (Fig. 3C). Moreover, SS and 

the resulting structure of HOIs arise in the simplest model of a neural population that possesses a spiking nonlinearity and 

correlated inputs (the DG model), where observation of SS is sufficient to decode most information of input conveyed by 15 
different orders of HOIs. These results suggest that excess SS is an important and ubiquitous characteristic of neural 

population activity that summarizes its low-dimensional structure in the combinatorial space of HOIs. We identified 

alternating signs of HOIs up to the 5th order with statistical significance in the analyzed data (Fig. 4C and D), and the DG 

model displayed the predicted structure up to the highest order of interaction (Fig. 6C). Based on these observations, we 

speculate that the predicted structure of HOIs beyond the 5th order should be identifiable in future, given longer experimental 20 
recordings. We also speculate that appropriate models 5,15,21 of neural population activity implicitly include excess SS as well 

as the resulting structure of HOIs, as demonstrated in the DG model. 

Multiple biological mechanisms may underlie the high SS probability observed and alternating signs of HOIs. While we have 

shown that even simple thresholding units with correlated inputs can reproduce this structure, we do not exclude 

contributions from other mechanisms. Indeed, we demonstrated the involvement of inhibitory input in generating SS (Fig. 5). 25 
Under the blockade of GABAA receptors, activities of neurons were almost completely synchronized. Therefore HOIs of the 

population activity were significantly diminished. It is expected that neurons are almost fully synchronized and fire regularly 

if inhibition is removed 40. However, it may require additional neuronal mechanisms with slow dynamics 41,42 to robustly 

account for the sparse synchronous activity observed in the current data sets. While this result may simply indicate that 

inhibition is necessary to place a network of neurons in a fluctuation-driven regime 43,44 for them to be sensitive to correlated 30 
input (c.f. Fig. 6), it may alternatively suggest the existence of clustered inhibitory input that simultaneously shuts down a 

group of local neurons and produces excess SS. Inhibitory interneurons in the hippocampus have diverging connections to 

principal neurons 45 and show powerful control over timing and rhythms of their spiking activity 46,47. Such inhibitory circuits 

are ideally suited to implement a winner-take-all-like competition among groups of neurons, which are common in models of 

hippocampal circuits aiming to reproduce place fields 48,49. Similar operations of hippocampal inhibitory circuits have also 35 
been suggested for cellular assemblies 50 and memory consolidation 51. Thus the excess SS in spontaneous activity reported 
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here might be related to functions requiring sparse information representation with a small fraction of active neurons. It is 

therefore interesting to see if the same experimental manipulation of inhibition that influences, for example, the sparse place 

field representation, also influences SS during spontaneous activity. 

 

Our study demonstrates that excess SS explains a large fraction of the variability caused by complex HOIs in neural 5 
populations. Although it was previously reported that HOIs fitted to several representative activity patterns explain 

occurrence probabilities of other general patterns 18, this study did not normalize the model probability distribution because 

of the computational complexity associated with the normalization step. As a drawback, it was previously unknown how 

much of the variability associated with HOIs was explained by a small number of representative activity patterns. In contrast, 

the entropy maximization approach we have taken was suitable to evaluate these quantities. More generally, virtually all 10 
previous studies of HOIs 14,19,20 attempted to fit multiple model parameters to the data rather than to extract the most 

prominent feature in the space of HOIs. Note that the hHOI model fitted to the data reproduces an observed histogram of the 

number of active neurons in time bins (i.e., a population spike-count histogram). Thus the hHOI model is equivalent to the K-

pairwise model proposed in Tkačik et al. 20 although the two models utilize different features of activity patterns to represent 

homogenous HOIs. We have found that SS can parsimoniously summarize 80% of the specific structure of hHOIs. 15 
Furthermore, successive orders of interaction have alternating signs. This resulting structure extends the negative triple-wise 

interactions previously found in local (<  .populations of 3 neurons 17 (݉ߤ300

 

In sum, we demonstrate that representing HOIs using “silence” provides a much more concise description than the canonical 

representation based “activity”. We conclude that significant SS is a ubiquitous feature in neural population activity that 20 
expresses apparently diverse HOIs across different orders. 

 

Methods 

Recording method Hippocampal slice cultures were prepared from postnatal day 7 Wistar/ST rats (SLC) (either male or 

female). Entorhino-hippocampal stumps were cultivated on membrane filters using 50% minimal essential medium, 25% 25 
Hanks’ balanced salt solution, 25% horse serum, and antibiotics in a humidified incubator at 37°C in 5% CO2 and were used 

for experiments on days 7 to 14 in vitro. On experimental days, slices were washed with oxygenated artificial cerebrospinal 

fluid (aCSF) consisting of (mM) 127 NaCl, 26 NaHCO3, 3.3 KCl, 1.24 KH2PO4, 1.2 MgSO4, 1.2 CaCl2, and 10 glucose and 

bubbled with 95% O2 and 5% CO2. They were then transferred to a 35-mm dish filled with 2 ml of dye solution and 

incubated for 40 min in a humidified incubator at 37°C in 5% CO2 with 0.0005% Oregon Green 488 BAPTA-1 (OGB-1) AM 30 
(Invitrogen), 0.01% Pluronic F-127 (Invitrogen), and 0.005% Cremophor EL (Sigma-Aldrich). They were recovered in aCSF 

for >30 min and mounted in a recording chamber at 32ºC and perfused with aCSF at a rate of 1.5–2.0 ml/min for >15 min. 

Hippocampal CA3 pyramidal cell layer was imaged at 10 Hz using a Nipkow-disk confocal microscopy (CSU-X1; 

Yokogawa Electric), a cooled CCD camera (iXonEM+ DV897; Andor Technology), an upright microscope with a water-

immersion objective lens (16×, 0.8 numerical aperture, Nikon). Fluorophores were excited at 488 nm with a laser diode and 35 
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visualized with a 507-nm long-pass emission filter. The recording lengths varied from 600 sec to 3300 sec (600 sec (n=9); 

1200 sec (n=4); 310, 610, 700, 900, 1100, 1800, 3300 s (n=1)). Picrotoxin was bath-applied at a concentration of 50 µM to 9 

slices (600 sec (n=7) and 350 s (n=2)). After identification of cell types, the regions of interest (ROIs) were carefully placed 

onto the cell bodies. The fluorescence change (ΔF/F) was calculated as ΔF/F = (Ft – F0)/F0, where Ft is the fluorescence 

intensity at time t, and F0 is the baseline averaged for 50 s before and after time t. For neurons, event times were 5 
reconstructed from the onsets of Ca2+ transients 3,27,28. The signals were then inspected by eye to remove erroneously detected 

noise. The data is available online (http://gaya.jp/data). Under the same condition as described above, membrane potentials 

were whole-cell recorded at I = 0 from pyramidal cells (n=7) visually identified under infrared differential interference 

contrast microscopy. Patch pipettes (3−6 MΩ) were filled with a solution consisting of (in mM) 120 K-gluconate, 10 KCl, 10 

HEPES, 10 creatine phosphate, 4 MgATP, 0.3 Na2GTP, and 0.2 EGTA. The signal was digitized at 10 kHz and filtered with 10 
a band of 1–2000 Hz. Liquid junction potentials were not corrected. Experiments were performed with the approval of the 

animal experiment ethics committee at the University of Tokyo (approval No. P24-6) and according to the University of 

Tokyo guidelines for the care and use of laboratory animals. All efforts were made to minimize the animals’ suffering and the 

number of animals used. 

 15 
Selection of groups of neighboring neurons From each slice, we selected 50 distinct overlapping groups, each consisting of 

10 nearest-neighbor neurons, based on the following procedure. In each slice, we estimated the density of spatial distribution 

of the cells in the recorded area of CA3 by an optimized 2-dimensional kernel density estimation method 52. We then sampled 

a spatial point from the estimated density, and selected the 10 neurons nearest to the point. We repeated this procedure until 

we obtained 50 distinct groups (we discarded groups of neurons if the exactly same group of 10 was previously selected). 20 
The neurons with low event rates (less than 0.01 Hz) were excluded from this analysis. In addition, we changed the number 

of neurons in a group from 3 to 14 to investigate effect of the group size (Fig. 3C). We sampled up to 50 groups per slice 

following the same sampling procedure described above. Finally, we sampled non-overlapping groups of ܰ = 3, ⋯ ,14 

neurons. Note that we can sample only a small number of groups from each slice if groups are stochastically sampled by the 

above-mentioned method. Thus, we took the following procedure to efficiently select non-overlapping groups from each slice. 25 
First, we fitted a 2-dimensional Gaussian density function to the spatial distribution of cells in each slice. We then determined 

the first principle components, and scored the positions of neurons along the first principle axis.  We selected neurons that are 

nearest neighbors in terms of this score as a group. To determine the number of groups sampled from each slice, we 

computed the maximum number of non-overlapping groups that can be sampled from each of all slices. We used the smallest 

number of groups among them to sample an equal number of groups from each slice.  30 
 

Model fitting and a test of simultaneous silence First, we fit to binary population activity data (see Fig. 1F in Results) the 

pairwise maximum entropy model 8,9,31, ଶܲ(ݔଵ, ⋯ , (ேݔ ∼ expൣ∑ ௜௜ݔ௜ߠ + ∑ ௝௜ழ௝ݔ௜ݔ௜௝ߠ ൧, where ݔ௜ is a binary variable of 0 or 1. 

Here the parameters of the model, {ߠ௜, ୑୐୉ߠ ,௜௝}, were fitted by a maximum likelihood principleߠ = argmaxఏ݈(ߠ), where ݈(ߠ) is the log likelihood of the data under the model. The nonlinear fitting was performed using a custom convex 35 
optimization program in Matlab. We then fit to the same data a maximum entropy model that augments the pairwise model 
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with a single term to account for the observed probability of SS in addition (the SS model, see Eq. 1 in Results). The increase 

in likelihood over the pairwise model seen after adding a parameter for the SS is related to the reduction in entropy by 2(݈ୗୗ − ݈ଶ) = ଶܪ)2ܶ −  ୗୗ), where ݈ୗୗ and ݈ଶ are the log likelihood of the data under the SS model and the pairwise modelܪ

respectively, and ܶ is the number of observed patterns (bins). Under the null hypothesis of no such SS term, the variability in 

the model estimation due to finite samples make the difference in log likelihood following a ߯ଶ-distribution with one degree 5 
of freedom as 2(݈ୗୗ − ݈ଶ)~߯ଶ(1) 11. The p-value of the observed likelihood increase was computed using this null 

distribution. The p-values were further corrected by the Benjamini-Hochberg-Yekutieli multiple comparison correction 

method that is applicable to dependent tests, using Matlab code written by Groppe et al. 53,54. This method controls the 

proportion of tests that incorrectly declare significant SS (the false discovery rate). 

 10 
A Dichotomized Gaussian (DG) model The DG model is a threshold neuron model with Gaussian input signals 33–36. The 

binary output of the ݅-th neuron (݅ = 1, ⋯ , ܰ) is given by ௜ܺ = 1 if ݑ௜ > 0 or  ௜ܺ = 0 if ݑ௜ ≤ 0, where ࢛ = ,ଵݑ) ,ଶݑ ⋯ ,  ே)′ isݑ

drawn from a multivariate Gaussian distribution with mean  ࢽ = ,ଵߛ) ,ଶߛ ⋯ ,  ே)′  and a covariance matrix Λ whose diagonalߛ

is 1 as ࢽ)ܰ~࢛, Λ). Note that ′ describes matrix (or vector) transpose. Here we consider a homogenous neuron pool: the mean 

is all fixed at ߛ௜ = −ℎ and the off-diagonal elements of Λ are all fixed at ܿin. The probability that individual output neurons 15 
are in an active state is given by ߟଵ = Φ(−ℎ), where Φ is the one-dimensional cumulative distribution function (CDF) of a 

zero-mean, unit variance Gaussian distribution. The probability of simultaneous activity of 2 neurons is given by ߟଶ =Φଶ(−ℎ, ܿin ), where Φଶ is the 2-dimensional Gaussian CDF with mean −ℎ and off-diagonal correlation coefficient ܿin. The 

correlation coefficient between 2 output neurons is given by ܿout = ଶߟ} − ଵ(1ߟ}/{ଵଶߟ −   .{(ଵߟ

 20 
The probability distribution of population activity has a simple analytical expression in this model. Note that the correlated 

inputs can be written as ݑ௜ = ඥ1 − ܿinݒ௜ + √ܿinߝ − ℎ, where ݒ௜ is a unit variance white Gaussian noise ݒ௜~ܰ(0,1) specific to 

each neuron, and (0,1)ܰ~ߝ is an input noise that is common across all neurons. The conditional probability of a single 

neuron spiking given the common input ߝ is given by 33 ݂(ߝ) = ߨ2√1 න ݁ି௨మ ଶ⁄ஶ
(௛ିఌ√௖in) ඥଵି௖inൗ ݑ݀ = 12 ቆ1 − erf( 1√2 ℎ − inඥ1ܿ√ߝ − ܿin )ቇ. (3) 

The probability that exactly ݉ neurons are active and ܰ − ݉ neurons are inactive is given by  25 
ୈܲୋ(݉) = ܧ ൤൬ܰ݉൰ ௠൫1(ߝ)݂ −  ൯ேି௠൨, (4)(ߝ)݂

where the expectation is performed with respect to the common input noise, ߝ. Note that the binomial factor ൫ே௠൯ sums all 

possible combinations of population activity patterns with ݉ active neurons. In order to obtain the probability mass function 

for the finite population size ܰ, we numerically computed the above equation. On the other hand, the same population-count 

probabilities are described by ܲ(݉) = ൬ܰ݉൰ exp ൤෍ ௞௠௞ୀଵߠ(݉)௞ܨ − ߰൨. (5) 
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Here ܨ௞(݉) = ൫௠௞ ൯ (݇ = 1, ⋯ , ܰ) is the k-th order feature of the hHOI model, which counts all combinations of choosing k 

neurons out of m active neurons,  and ߰ is  a normalization factor. Thus, by solving linear equations, log ܲ(݉) = log ୈܲୋ(݉) 

for ݉ = 0,1, ⋯ , ܰ, we obtain the parameters, ߠ௞ (݇ = 1, ⋯ , ܰ), and the normalization factor ߰.  

 

We quantify the signal-to-noise ratio for estimating the input correlation, ܿ୧୬, based on the population activity of the 5 
homogenous DG model as follows. A small change in ܿ୧୬ is inferred from a vector of observation, ࡲ୭ୠୱ(݉) = ,(݉)௦భܨ) … , ௝ݏ ௦ೝ(݉))′,  where indicesܨ ∈ {1, … , ܰ} (݆ = 1, … ,  specify a subset of r features that are taken into (ݎ

account for the inference. The signal for detecting the input correlation is given by ߲E[ࡲ୭ୠୱ(݉)] ߲ܿ୧୬⁄  and the noise of the 

observation is quantified by Cov[ࡲ୭ୠୱ(݉)], where E[∙] is the expectation and Cov[∙] is the ݎ ×  covariance matrix calculated ݎ

using ୈܲୋ(݉) defined above. Together, the signal-to-noise ratio is given by 
డ୉[ࡲ౥ౘ౩(௠)]ᇱడ௖౟౤ Cov[ࡲ୭ୠୱ(݉)]ିଵ డ୉[ࡲ౥ౘ౩(௠)]డ௖౟౤ 38,39. In 10 

the paper, we specifically consider three types of observations as ࡲ୭ୠୱ(݉): the full observation (ܨଵ(݉), … ,  ே(݉))′, theܨ

activity rates of individual and pairwise neurons ൫ܨଵ(݉), ,(݉)ଵܨ) ଶ(݉)൯′, and these activity rates plus the SS rateܨ ,(݉)ଶܨ ,(݉)ଵܨ) ௜,௝ represents Kronecker's delta. Notably, when all the featuresߜ ௠,଴)′, whereߜ … ,  ே(݉))′ areܨ

observed, the above signal-to-noise ratio becomes equivalent to the Fisher information 55 of the input correlation, i.e., E[− డమడ௖౟౤మ log ୈܲୋ(݉)], and thus upper-bounds the accuracy of unbiased estimators of ܿ୧୬ based on the population activity. See 15 
56,57 for information in subset features achieved by a general optimal nonlinear decoder as assessed by the Fisher information.  

 

References 1. Salinas, E. & Sejnowski, T. J. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2, 539–550 (2001). 20 2. Reyes, A. D. Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat 
Neurosci 6, 593–599 (2003). 3. Takahashi, N., Sasaki, T., Matsumoto, W., Matsuki, N. & Ikegaya, Y. Circuit topology for synchronizing neurons in spontaneously active networks. Proc Natl Acad Sci USA 107, 10244–102499 (2010). 4. Vidne, M. et al. Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. J 25 
Comput Neurosci 33, 97–121 (2012). 5. Köster, U., Sohl-Dickstein, J., Gray, C. M. & Olshausen, B. A. Modeling higher-order correlations within cortical microcolumns. PLoS Comput Biol 10, e1003684 (2014). 6. De la Rocha, J., Doiron, B., Shea-brown, E. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–807 (2007). 30 7. Pitkow, X. & Meister, M. Decorrelation and efficient coding by retinal ganglion cells. Nat Neurosci 15, 628–635 (2012). 8. Schneidman, E., Berry, M. J., Segev, R. & Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440, 1007–1012 (2006). 



 

 14

9. Shlens, J. et al. The structure of multi-neuron firing patterns in primate retina. J Neurosci 26, 8254–8266 (2006). 10. Martignon, L. et al. Neural coding: higher-order temporal patterns in the neurostatistics of cell assemblies. 
Neural Comput 12, 2621–2653 (2000). 11. Nakahara, H. & Amari, S. Information-geometric measure for neural spikes. Neural Comput 14, 2269–2316 5 (2002). 12. Tang, A. et al. A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. J Neurosci 28, 505–518 (2008). 13. Yu, S., Huang, D., Singer, W. & Nikolic, D. A small world of neuronal synchrony. Cereb Cortex 18, 2891–2901 (2008). 10 14. Montani, F. et al. The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex. Philos Trans. A Math Phys Eng Sci 367, 3297–3310 (2009). 15. Montani, F., Phoka, E., Portesi, M. & Schultz, S. R. Statistical modelling of higher-order correlations in pools of neural activity. Physica A 392, 3066–3086 (2013). 16. Ohiorhenuan, I. E. et al. Sparse coding and high-order correlations in fine-scale cortical networks. Nature 466, 15 617–621 (2010). 17. Ohiorhenuan, I. E. & Victor, J. D. Information-geometric measure of 3-neuron firing patterns characterizes scale-dependence in cortical networks. J Comput Neurosci 30, 125–141 (2011). 18. Ganmor, E., Segev, R. & Schneidman, E. Sparse low-order interaction network underlies a highly correlated and learnable neural population code. Proc Natl Acad Sci USA 108, 9679–9684 (2011). 20 19. Tkačik, G. et al. The simplest maximum entropy model for collective behavior in a neural network. J Stat Mech 
Theor Exp P03011 (2013). 20. Tkačik, G. et al. Searching for collective behavior in a large network of sensory neurons. PLoS Comput Biol 10, e1003408 (2014). 21. Santos, G. S., Gireesh, E. D., Plenz, D. & Nakahara, H. Hierarchical interaction structure of neural activities in 25 cortical slice cultures. J Neurosci 30, 8720–8733 (2010). 22. Yu, S. et al. Higher-order interactions characterized in cortical activity. J Neurosci 31, 17514 –17526 (2011). 23. Shimazaki, H., Amari, S., Brown, E. N. & Grün, S. State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Comput Biol 8, e1002385 (2012). 24. Levy, W. B. & Baxter, R. A. Energy efficient neural codes. Neural Comput 8, 531–543 (1996). 30 25. Okamoto, K. et al. Ex vivo cultured neuronal networks emit in vivo-like spontaneous activity. J Physiol Sci 64, 421–431 (2014). 26. Ikegaya, Y., Aaron, G. & Cossart, R. Synfire chains and cortical songs: Temporal modules of cortical activity. 
Science 304, 559–564 (2004). 



 

 15

27. Sasaki, T., Matsuki, N. & Ikegaya, Y. Metastability of active CA3 networks. J Neurosci 27, 517–528 (2007). 28. Takahashi, N., Sasaki, T., Usami, A., Matsuki, N. & Ikegaya, Y. Watching neuronal circuit dynamics through functional multineuron calcium imaging (fMCI). Neurosci Res 58, 219–225 (2007). 29. Mizuseki, K. & Buzsáki, G. Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 4, 1010–1021 (2013). 5 30. Buzsáki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat Rev 
Neurosci 15, 264–278 (2014). 31. Cocco, S., Leibler, S. & Monasson, R. Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proc Natl Acad Sci USA 106, 14058–14062 (2009). 32. Okun, M. et al. Population rate dynamics and multineuron firing patterns in sensory cortex. J Neurosci 32, 10 17108–17119 (2012). 33. Amari, S., Nakahara, H., Wu, S. & Sakai, Y. Synchronous firing and higher-order interactions in neuron pool. 
Neural Comput 15, 127–142 (2003). 34. Bethge, M. & Berens, P. Near-maximum entropy models for binary neural representations of natural images. 
Adv NIPS 20, 97–104 (2008). 15 35. Macke, J. H., Opper, M. & Bethge, M. Common input explains higher-order correlations and entropy in a simple model of neural population activity. Phys Rev Lett 106, 208102 (2011). 36. Montangie, L. & Montani, F. Quantifying higher-order correlations in a neuronal pool. Physica A 421, 388–400 (2015). 37. Seriès, P., Latham, P. E., Pouget, A. & Seriés, P. Tuning curve sharpening for orientation selectivity: coding 20 efficiency and the impact of correlations. Nat Neurosci 7, 1129–1135 (2004). 38. Beck, J., Bejjanki, V. R. & Pouget, A. Insights from a simple expression for linear fisher information in a recurrently connected population of spiking neurons. Neural Comput 23, 1484–1502 (2011). 39. Moreno-Bote, R. et al. Information-limiting correlations. Nat Neurosci 17, 1410–1417 (2014). 40. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput 25 
Neurosci 8, 183–208 (2000). 41. Mongillo, G., Barak, O. & Tsodyks, M. Synaptic theory of working memory. Science 319, 1543–1546 (2008). 42. Curto, C., Sakata, S., Marguet, S., Itskov, V. & Harris, K. D. A simple model of cortical dynamics explains variability and state dependence of sensory responses in urethane-anesthetized auditory cortex. J Neurosci 29, 10600–10612 (2009). 30 43. Van Vreeswijk, C. & Sompolinsky, H. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, 1724–1726 (1996). 44. Shadlen, M. N. & Newsome, W. T. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J Neurosci 18, 3870–3896 (1998). 



 

 16

45. Freundl, TF and Buzsaki, G. Interneurons of the Hippocampus. Hippocampus 6, 347–470 (1996). 46. Royer, S. et al. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. 
Nat Neurosci 15, 769–75 (2012). 47. Bartos, M., Vida, I. & Jonas, P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8, 45–56 (2007). 5 48. Rolls, E. T., Stringer, S. M. & Elliot, T. Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network 17, 447–465 (2006). 49. Cheng, S. & Frank, L. M. The structure of networks that produce the transformation from grid cells to place cells. Neuroscience 197, 293–306 (2011). 50. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit 10 operations. Science 321, 53–57 (2008). 51. Alvarez, P. & Squire, L. R. Memory consolidation and the medial temporal lobe: a simple network model. Proc 
Natl Acad Sci USA 91, 7041–7045 (1994). 52. Shimazaki, H. & Shinomoto, S. Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29, 171–182 (2010). 15 53. Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. 29, 1165–1188 (2001). 54. Groppe, D. M., Urbach, T. P. & Kutas, M. Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology 48, 1711–1725 (2011). 55. Cover, T. M. & Thomas, J. A. Elements of Information Theory. (John Wiley & Sons, Inc., 1991). 20 56. Oizumi, M., Ishii, T., Ishibashi, K., Hosoya, T. & Okada, M. Mismatched Decoding in the Brain. J. Neurosci. 30, 4815–4826 (2010). 57. Koyama, S. On the Relation Between Encoding and Decoding of Neuronal Spikes. 1425, 1408–1425 (2012).  

 

  25 



 

 17

Acknowledgements 

We thank Takuya Sasaki for his help in providing picrotoxin data, and Charles Yokoyama and Alexandra V Terashima for 
their critical reading of our manuscript. This work was supported by RIKEN Brain Science Institute (HS and TT), Kakenhi 
22115003 (YI), and Health and Labour Sciences Research Grants for Research on Regulatory Science of Pharmaceuticals 
and Medical Devices from MHLW (iNCENS: iPS-Non Clinical Experiments for Nervous System) (YI). 5 
  
Author contributions 

H.S.: Conception and design; Analysis and interpretation of data; Drafting and revising the article. K.S.: Drafting and 

revising the article. T.I.: Acquisition of data; Revising the article. Y.I.: Acquisition of data; Drafting and revising the article. 10 
T.T.: Conception and design; Analysis and interpretation of data; Drafting and revising the article.  
Conflict of Interest 

The authors declare no competing financial interests. 

 15   



 

 18

Figure Legends 
Figure 1  Ensemble activity of CA3 putative neurons detected by Calcium imaging. (A) Ensemble activity of 45 neurons 

from a single hippocampal slice. Small vertical ticks indicate events detected from calcium imaging signals. Ensemble 

activity of an example group of 10 neurons is marked in red. (B) Spatial distribution of neurons in the CA3 area of the slice 

in A. Each filled circle represents a position of a neuron. The color indicates event rate of each neuron. The pink area 5 
corresponds to the example group highlighted in A. (C) Distribution of event rates from neurons in all 20 slices. Solid line is 

a fitted log-normal distribution. (D) Distribution of correlation coefficients calculated from the event sequences (within a 100 

ms window) from all the pairs of neurons in 1000 neighboring groups from 20 slices. The inset shows an average cross-

correlogram from all the pairs of neurons. Dashed lines indicate ±2 SD of the correlogram at 1–2 sec lags. The gray shading 

(-0.2 ms to +0.2 ms) indicates the interval where the correlgoram exceeded the dashed lines. (E) Distributions of membrane 10 
potentials recorded from neurons (n=7) in hippocampal slice cultures under the same condition as described in Methods. 

Different colors indicate different neurons. In all cases, the densities of the membrane potentials were characterized by a 

unimodal profile. (F) Construction of binary patterns from event sequences. The event sequences are binned using a window 

of 400 ms. In each bin, we denote ‘0’ if there is no event, and ‘1’ if there is at least one event.  

 15 
Figure 2 Sub-groups of 10 hippocampal neurons exhibit longer periods of SS than predicted from pairwise interactions. (A) 

Distribution of the percentage deviation of the observed probability of SS of 10 neurons from the prediction of the pairwise 

model,  {ܲୢ ୟ୲ୟ(0, ⋯ ,0) − ଶܲ(0, ⋯ ,0)}/ ଶܲ(0, ⋯ ,0). Positive values indicate more frequent SS in the data than predicted by 

the pairwise model. (B) Histogram of percentage entropy margins for HOIs computed as (ܪଶ −  ଶ. (C) Dependencyܪ/(ୟ୲ୟୢܪ

of the percentage entropy margin for HOIs on the percentage deviation of the observed from predicted probabilities of SS. 20 
The same color indicates groups selected from the same slice culture. 5 outliers were excluded from the plots. 

 

Figure 3 Significant SS is observed in the groups of 10 neurons exhibiting HOIs. (A) (Left) Comparison of the observed SS 

probabilities of sub-groups of ݎ neurons with predictions of the pairwise model. Abscissa, the size ݎ of sub-groups. Ordinate, 

the percentage deviation of observed from predicted average SS probabilities of sub-groups of neurons, where the 25 
normalization divides the difference by SS probability predicted from a pairwise model. The comparison was performed for 

all possible sub-groups of ݎ(= 1,2, ⋯ ,10) neurons in the 1000 groups of 10 neurons. Whiskers represent 1.5 times the 

distance from 25th to 75th percentile. Dots are outliers. (Right) Comparison of the observed SS probabilities of the sub-

groups with predictions of the SS model. Note the difference in the scales of the ordinates in the Left and Right panels. (B) 

Distribution of percentage entropy margins for HOIs for the SS groups (red, 16%), i.e. groups for which the SS model 30 
showed significantly better fit than the pairwise model, and the rest of the groups (gray, 84%). The right inset shows 

distribution of the parameter ߠ଴ of the SS groups. The distribution was heavily biased toward positive ߠ଴, indicating prevalent 

excess SS. (C) Group size dependency of the number of SS groups. Solid lines with different colors indicate different 

numbers of groups selected from each slice: 5, 10, 50 groups per slice, for a total of ݊ =100, 200, and 1000 groups of size ܰ 

from 20 slices, respectively. The dashed black line is the result of selecting non-overlapping groups from each slice (see 35 
Methods). Thus, the fraction of SS groups and its group size dependency were robust to the degree of overlap between 
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sampled groups in each slice. (D) Scatter plots of entropy margins for HOIs versus entropy margins for SS. The same color 

indicates groups selected from the same slice culture. Filled circles indicate SS groups. Dashed lines represent different 

proportions of HOI entropy margin explained by the SS term, ߙ = ଶܪ) − ଶܪ)/(ୗୗܪ −  ୟ୲ୟ). 13 outliers were excluded fromୢܪ

the plots. (E) Cumulative distribution function of the proportion of SS, ߙ, in the groups exhibiting HOIs (∆ୌ୓୍>3%).  

Figure 4 The groups that express HOIs exhibited alternating signs of homogenous HOIs at successive orders of interaction. 5 
(A) Scatter plots of entropy margins for hHOIs versus entropy margins for SS. The same color indicates groups selected from 

the same slice culture. Filled circles indicate groups exhibiting HOIs (∆ୌ୓୍>3%). Dashed lines represent different proportions 

of homogenous HOI entropy margin explained by the SS term, ߚ = ଶܪ) − ଶܪ)/(ୗୗܪ −  ୦ୌ୓୍). 9 outliers were excludedܪ

from the plots. (B) Cumulative distribution function of this proportion, ߚ, for the groups exhibiting HOIs (∆ୌ୓୍>3%).  (C) 

The homogeneous HOI parameters up to the 6th order of the hHOI model. Each box covers 25th to 75th percentile, and 10 
whiskers represent 1.5 times the distance from the 25th to 75th percentile. Dots are outliers. The distributions at the 3rd, 4th, 

and 5th order deviated significantly from zero (two tailed sign test, *** and * represent significance level 0.001 and 0.05, 

respectively). (D) (Left) 3-dimensional plots of the homogeneous HOIs of the hHOI model. Outliers with elements larger 

than 10 and less than -10 were excluded. (Right) A histogram of the number of groups that fell in 8 quadrants of the ൫̅ߠଷ , ସߠ̅ , ହߠ̅ ൯ parameter space. The same color marks the same slice culture. The dotted horizontal line is the chance level 15 
(12.5%) with random HOIs.  
Figure 5 Blocking inhibitory networks by PTX eliminated HOIs. The panels retain the same presentation format as in Fig. 

1A, D and Fig. 3B. (A) Ensemble activity of 76 neurons in CA3 area from a single hippocampal slice under bath application 

of PTX. (B) Distribution of correlation coefficients between two event sequences (resolution of 100 ms) of all the pairs of 20 
neurons in 450 groups from 9 slices. Inset shows an average cross-correlogram. (C) Distribution of percentage entropy 

margin for HOIs. The groups that showed improved fitting with the SS term are marked in red (the SS groups, 4%). Others 

(96%) are in gray. (D) The number of the SS groups with respect to the bin size for the analysis.  

 

Figure 6 The ensemble activity simulated by the Dichotomized Gaussian (DG) model exhibits alternating signs of HOIs 25 
depending on successive orders of interaction. (A) Illustration of a DG model of 3 neurons. The traces in each panel represent 

correlated input variables, ࢛ = ,ଵݑ) ,ଶݑ  ଷ)′ at different time steps.  The inputs are sampled from a multivariate Gaussianݑ

distribution, ࢽ)ܰ~࢛, Λ), with mean vector ࢽ and covariance Λ (See Methods). Here we assume that the mean vector contains 

the same scalar element, −1.75, in order to yield the activity probability 0.04, a value close to the empirically observed 

average activity rate (0.039 per 400 ms window).  The off-diagonal elements of Λ are all fixed at ܿin = 0.4. The vertical lines 30 
above 0 in each panel mark the time steps at which an input crosses the threshold. (B) Simulation of the DG model with 100 

neurons with weak (Left) and strong (Right) input correlations. The weak input correlation (ܿin = 0.2) in the Left panel yields 

a weak correlation coefficient (ܿout = 0.05) of output binary variables, whereas the strong input correlation (ܿin = 0.4) in the 

Right panel yields a stronger correlation coefficient (ܿout = 0.13) of output binary variables.  (C) The HOIs of a small 

population ܰ = 10 from the DG model shows clear alternation of signs as the order of interaction ݇ increases except for 35 ܿin = 0. Negative interactions occur at odd ݇ and positive interactions occur at even ݇. (D) The parameter of SS, ߠ଴, as a 
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function of input correlation coefficient, ܿ୧୬. The dots marked in color represent ߠ଴ at ܿ୧୬ = 0, 0.2, and 0.4. (E) The signal-to-

noise ratio of the input correlation coefficient, ܿ୧୬, as a function of ܿ୧୬ in the population activity of the DG model (The solid 

purple line). The dotted lines are signal-to-ratios in the subset features of the population activity (blue: the activity rates of 

individual and pairwise neurons; orange: the activity rates of individual and pairwise neurons plus the SS rate).    5 
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Table 1 
Activity rates, correlation coefficients, and probabilities of SS computed from binary sequences using 400 ms window under 
control and PTX conditions. Values are expressed as Mean (±SD).  

 Activity rate  Correlation coefficient Prob. SS 
Control 0.039 (±0.042) 0.060 (±0.108) 0.728 (±0.152) 
   SS groups 0.032 (±0.035) 0.172 (±0.122) 0.831 (±0.103) 
   Non-SS gropus 0.040 (±0.043) 0.040 (±0.092) 0.706 (±0.151) 
PTX   0.027 (±0.017) 0.920 (±0.108) 0.965 (±0.021) 
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