A Recipe for Constructing a Peri-stimulus Time Histogram

Hideaki Shimazaki
Dept. of Physics Kyoto University, Japan

March 1, 2007 Johns Hopkins University
March 2, 2007 Columbia University
Peri-stimulus Time Histogram

Events (Spikes)

Repeate trials

a PST Histogram

From Spikes: Exploring the Neural Code, Rieke et al. 1997

Adrian, E. (1928). *The basis of sensation: The action of the sense organs.*

George L. Gerstein and Nelson Y.-S. Kiang (1960)
1. Bin Width Selection

MISE = \int (\lambda_t - \hat{\lambda}_t)^2 dt

Underlying Rate

Histogram

Data

Estimate

C_n(\Delta) = \frac{2k - \nu}{\Delta^2}
Method for Selecting the Bin Size

- Divide the data range into N bins of width Δ. Count the number of events k_i in the ith bin.

- Compute the cost function

$$C_n(\Delta) = \frac{2k - v}{(n\Delta)^2},$$

while changing the bin size Δ.

- Find Δ^* that minimize the cost function.

\[\begin{align*}
\text{Mean} & \quad k = \frac{1}{N} \sum_{i=1}^{N} k_i, \\
\text{Variance} & \quad v = \frac{1}{N} \sum_{i=1}^{N} (k_i - k)^2
\end{align*}\]
The mean underlying rate in an interval $[0, \Delta]$:

$$\theta = \frac{1}{\Delta} \int_0^\Delta \lambda_t \, dt.$$

The spike count in the bin obeys the Poisson distribution*:

$$p(k \mid n\Delta \theta) = \frac{(n\Delta \theta)^k}{k!} e^{-n\Delta \theta}.$$

A histogram bar-height is an estimator of θ:

$$\hat{\theta}_n = \frac{k}{n\Delta}$$

*When the spikes are obtained by repeating an independent trial, the accumulated data obeys the Poisson point process due to a general limit theorem.
Theory: Selection of the Bin Size

\[\text{MISE} \equiv \frac{1}{T} \int_0^T E(\hat{\lambda}_t - \lambda_t)^2 \, dt = \left\langle \frac{1}{\Delta} \int_0^\Delta E(\hat{\theta}_n - \lambda_t)^2 \, dt \right\rangle. \]

Expectation by the Poisson statistics, given the rate. Average over segmented bins.

\[\text{MISE} = \left\langle E(\hat{\theta}_n - \theta)^2 \right\rangle + \frac{1}{\Delta} \int_0^\Delta \left\langle (\lambda_t - \theta)^2 \right\rangle \, dt. \]

Sampling Error Systematic Error

Decomposition of the Systematic Error

\[\left\langle \theta \right\rangle - \left\langle \theta \right\rangle = \frac{1}{\Delta} \int_0^\Delta \left\langle (\lambda_t - \theta)^2 \right\rangle \, dt = \frac{1}{\Delta} \int_0^\Delta \left\langle (\hat{\lambda}_t - \left\langle \theta \right\rangle)^2 \right\rangle \, dt - \left\langle (\theta - \left\langle \theta \right\rangle)^2 \right\rangle. \]

Systematic Error Variance of the rate Independent of \(\Delta \)

Variance of an ideal histogram
Introduction of the cost function:

\[C_n(\Delta) = \text{MISE} - \frac{1}{T} \int_0^T (\lambda_t - \langle \theta \rangle)^2 dt \]

\[= \left\langle E(\hat{\theta}_n - \theta)^2 \right\rangle - \left\langle (\theta - \langle \theta \rangle)^2 \right\rangle. \]

\text{Sampling error} \quad \text{Unknown: Variance of an ideal histogram}

The variance decomposition:

\[\left\langle E(\hat{\theta}_n - \langle E\hat{\theta}_n \rangle)^2 \right\rangle = \langle E(\hat{\theta}_n - \theta)^2 \rangle + \langle (\theta - \langle \theta \rangle)^2 \rangle. \]

\text{Variance of a histogram} \quad \text{Sampling error}

\[C_n(\Delta) = 2\left\langle E(\hat{\theta}_n - \theta)^2 \right\rangle - \left\langle E(\hat{\theta}_n - \langle E\hat{\theta}_n \rangle)^2 \right\rangle. \]

The Poisson statistics obeys:

\[E(\hat{\theta}_n - \theta)^2 = \frac{1}{n\Delta} E\hat{\theta}_n. \]

\[C_n(\Delta) = \frac{2}{n\Delta} \left\langle E\hat{\theta}_n \right\rangle - \left\langle E(\hat{\theta}_n - \langle E\hat{\theta}_n \rangle)^2 \right\rangle. \]

\text{Mean of a Histogram} \quad \text{Variance of a Histogram}
Application to an MT neuron data

Data: Britten et al. (2004) neural signal archive

1. Optimal bin size decreases

2. Too few to make a Histogram!

Optimized Histogram

$n=5$

$n=20$

$n=50$
Theories on the Optimal Bin Size
If you know the underlying rate, you can compute

Theoretical cost function:

\[
C_n(\Delta) = \frac{\langle \theta \rangle}{n\Delta} - \left(\langle \theta - \langle \theta \rangle \rangle^2\right)
\]

\[
= \frac{\mu}{n\Delta} - \frac{1}{\Delta^2} \int_0^\Delta \int_0^\Delta \phi(t_1 - t_2) dt_1 dt_2.
\]

See also Koyama and Shinomoto

(i) Expansion of the cost function by Δ:

Theoretical cost function:
$$C_n(\Delta) = \frac{\mu}{n\Delta} - \frac{1}{\Delta^2} \int_0^\Delta \int_0^\Delta \phi(t_1 - t_2)\, dt_1\, dt_2.$$

When the number of sequences is large, the optimal bin size is very small

The expansion of the cost function by Δ:

$$C_n(\Delta) = \frac{\mu}{n\Delta} - \phi(0) - \frac{1}{3} \phi'(0_+) \Delta - \frac{1}{12} \phi''(0) \Delta^2 + O(\Delta^3).$$

Scaling of the optimal bin size:

$$\Delta^* \sim \left(-\frac{6\mu}{\phi''(0) n} \right)^{1/3}.$$

Ref. Scott (1979)
(ii) Divergence of the optimal bin size

When the number of sequences is small, the optimal bin size is very large.

The expansion of the cost function by $1/\Delta$:

$$C_n(\Delta) \sim \frac{\mu}{n\Delta} - \frac{1}{\Delta} \int_{-\infty}^{\infty} \phi(t) dt + \frac{1}{\Delta^2} \int_{-\infty}^{\infty} |t| \phi(t) dt$$

$$= \mu \left(\frac{1}{n} - \frac{1}{n_c} \right) \frac{1}{\Delta} + u \frac{1}{\Delta^2}$$

The second order phase transition.

Critical number of trials:
$$n_c = \mu \int_{-\infty}^{\infty} \phi(t) dt$$

$n < n_c$ Optimal bin size diverges.

$n > n_c$ Finite optimal bin size.

Not all the process undergoes the first order phase transition. Others undergo the second order (discontinuous) phase transition.
Phase transitions of optimal bin size

\(n_c: \) critical number of trials

- \(n: \) small
- \(n: \) large

\(n = 10 \)

\(n = 15 \)

\(n = 20 \)

\(n = 25 \)

\(n_c \)
Back to Practice!
2. The extrapolation method

Extrapolation

\[
C_m(\Delta | n) = \left(\frac{1}{m} - \frac{1}{n} \right) \frac{k}{n\Delta^2} + C_n(\Delta)
\]

Estimation:
At least 12 trials are required.

Data: Britten et al. (2004) neural signal archive
Verification of the extrapolation method

Original: \(C_n(\Delta) \)
Optimal bin size diverges

Extrapolated:
\[
C_m(\Delta | n) = \left(\frac{1}{m} - \frac{1}{n} \right) \frac{k}{n\Delta^2} + C_n(\Delta)
\]

Finite optimal bin size

We have \(n=30 \) Sequences

Required # of sequences

\[
\hat{n}_c = \frac{\mu}{\int_{-\infty}^{\infty} \phi(t) dt}
\]

Required # of trials

\# of sequences used
2. The extrapolation method

Data: Britten et al. (2004) neural signal archive

Extrapolation

\[C_m(\Delta | n) = \left(\frac{1}{m} - \frac{1}{n} \right) \frac{k}{n\Delta^2} + C_n(\Delta) \]

Estimation:
At least 12 trials are required.

Too few to make a Histogram!
Advanced Topics
Line-Graph Time Histogram

A line-graph is constructed by connecting top-centers of adjacent bar-graphs.

\[L_t = \frac{\theta^+ + \theta^-}{2} + \frac{\theta^+ - \theta^-}{\Delta} t. \]

\[\Lambda^+ \equiv \frac{1}{\Delta} \int_0^\Delta \lambda, \, dt. \quad \theta^- \equiv \frac{1}{\Delta} \int_{-\Delta}^0 \lambda, \, dt. \]

The spike count obeys the Poisson distribution

\[p(k | n\Delta\Lambda) = \frac{(n\Delta\theta)^k}{k!} e^{-n\Delta\theta}. \]

An estimator of a line-graph

\[\hat{L}_t = \frac{\hat{\theta}^+ + \hat{\theta}^-}{2} + \frac{\hat{\theta}^+ - \hat{\theta}^-}{\Delta} t. \]
A Recipe for an optimal line-graph TH

(i) Define the four spike counts,
\[
k^{(+)}_i(j), k^{(-)}_i(j), k^{(0)}_i(j), k^{(*)}_i(j) \quad p = \{-, +, 0, *\}
\]

(ii) Summation of the spike count
\[
k^{(p)}_i = \sum_{j=1}^{n} k^{(p)}_i(j)
\]

Covariations w.r.t. bins
\[
s^{(p,q)} = \frac{1}{N} \sum_{i=1}^{N} \left(k^{(p)}_i - \bar{k}^{(p)} \right) \left(k^{(q)}_i - \bar{k}^{(q)} \right)
\]

Bin-average of the covariation of spike count w.r.t. sequences,
\[
s^{(p,q)} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{n} \sum_{j=1}^{n} \left(k^{(p)}_i(j) - \frac{k^{(p)}_i}{n} \right) \left(k^{(q)}_i(j) - \frac{k^{(q)}_i}{n} \right)
\]

(iii) The covariances of an ideal line-graph model is
\[
\sigma^{(p,q)} = \frac{s^{(p,q)}}{(n\Delta)^2} - \frac{s^{(p,q)}}{n\Delta^2}
\]

(iv) Cost function:
\[
C_n(\Delta) = \frac{2}{3} \frac{\bar{k}^{(+)}}{(n\Delta)^2} + \frac{2}{3} \sigma^{(+,+)} + \frac{1}{3} \sigma^{(+,-)} - 2\sigma^{(+,0)} - 2\sigma^{(+,*)}
\]

(v) Repatan i through iv by changing \(\Delta \). Find the optimal \(\Delta \) that minimizes the cost function.
The optimal Line-Graph Histogram

The Line-graph histogram performs better if the rate is smooth.
2. Theories on the optimal bin size

Theoretical Cost Function

\[
C_n(\Delta) = \frac{\langle \theta \rangle}{n\Delta} - \langle (\theta - \langle \theta \rangle)^2 \rangle
\]

\[
= \frac{\mu}{n\Delta} - \frac{1}{\Delta^2} \int_0^\Delta \int_0^\Delta \phi(t_1 - t_2) dt_1 dt_2.
\]

\[
C_n(\Delta) = \frac{2\mu}{3n\Delta} - \frac{2}{\Delta^2} \int_0^\Delta \int_{-\Delta/2}^{\Delta/2} \left(1 + \frac{2t_2}{\Delta}\right) \phi(t_1 - t_2) dt_1 dt_2
\]

\[
+ \frac{2}{3\Delta^2} \int_0^\Delta \int_0^\Delta \phi(t_1 - t_2) dt_1 dt_2 + \frac{1}{3\Delta^2} \int_0^\Delta \int_{-\Delta}^0 \phi(t_1 - t_2) dt_1 dt_2.
\]

(i) Scalings of the optimal bin size

The expansion of the cost function by Δ:

\[
C_n(\Delta) = \frac{\mu}{n\Delta} - \phi(0) - \frac{1}{3} \phi'(0_+) \Delta - \frac{1}{12} \phi''(0) \Delta^2 + O(\Delta^3).
\]

\[
C_n(\Delta) = \frac{2\mu}{3n\Delta} - \phi(0) - \frac{37}{144} \phi'(0_+) \Delta + \frac{181}{5760} \phi''(0_+) \Delta^3 + \frac{49}{2880} \phi'''(0) \Delta^4 + O(\Delta^5)
\]

the second order term vanishes.

A smooth process: A correlation function is smooth at origin.

\[
\phi'(0_+) = 0 \quad \text{(Bar-Graph)} \quad \Delta^* \sim \left(\frac{6\mu}{\phi''(0)n}\right)^{1/3}.
\]

\[
\phi'(0_+) = 0 \quad \text{(Line-Graph)} \quad \Delta^* \sim \left(\frac{1280\mu}{181\phi'''(0)n}\right)^{1/5}.
\]

A jagged process: A correlation function has a cusp at origin.

\[
\phi'(0_+) \neq 0 \quad \text{(Bar-Graph)} \quad \Delta^* \sim \left(\frac{3\mu}{\phi'(0_+ n)}\right)^{1/2}.
\]

\[
\phi'(0_+) \neq 0 \quad \text{(Line-Graph)} \quad \Delta^* \sim \left(\frac{96\mu}{37\phi'(0_+ n)}\right)^{1/2}.
\]
Identification of the scaling exponents

Bar-Graph Histogram

\[\Delta_m \]

\[\text{Data Size Used} \]

smooth \[\Delta^* \sim n^{-1/3} \]

zig-zag \[\Delta^* \sim n^{-1/2} \]

Line-Graph Histogram

\[\Delta_m \]

\[\text{Data Size Used} \]

smooth \[\Delta^* \sim n^{-1/5} \]

zig-zag \[\Delta^* \sim n^{-1/2} \]
The second and the first order phase transitions

Power spectrum of a rate process

Cost functions

Optimal Bin Size
1. Bin width selection
 - The method and theory
 - Application to an MT neuron

2. Theories on the optimal bin width
 - Scaling and Phase transitions

3. Advice to experimentalists
 - Extrapolation method
FAQ

Q. Can I apply the proposed method to a histogram for a probability distribution?
A. Yes.

Q. I want to make a 2-dimensional histogram. Can I use this method?
A. Yes.

Q. I obtained a very small bin width, which is likely to be erroneous. Why?
A. You probably searched smaller bin size than the sampling resolution.

Q. Can I use unbiased variance for computation of the cost function?
A. No.

\[C(\Delta) = \frac{2k - v}{\Lambda^2} \]

\[v = \frac{1}{N} \sum_{i=1}^{N} (k_i - k)^2 \]

\[v = \frac{1}{N-1} \sum_{i=1}^{N} (k_i - k)^2 \]
A Method for Selecting the Bin Size of a Time Histogram

Hideaki Shimazaki and Shigeru Shinomoto

Neural Computation in Press

Short Summary:

- Web Application for the Bin Size Selection
- Matlab / Mathematica / R sample codes

are available at our homepage
http://www.ton.scphys.kyoto-u.ac.jp/~shino/

See also
http://www.ton.scphys.kyoto-u.ac.jp/~hideaki/

Acknowledgements

Prof. Shigeru Shinomoto
Dr. Shinsuke Koyama

JSPS Research Grant
Introducing myself...

Hideaki Shimazaki

2003 MA Prof. Ernst Niebur
Dept. of Neuroscience, Johns Hopkins University
Baltimore, Maryland

2007 Ph. D Prof. Shigeru Shinomoto
Dept. of Physics Kyoto University, Kyoto, Japan

2006-2008 JSPS Research Fellow
The Poisson Point Process

Rate $\lambda(t)$

Data

Pr[One event in $\delta t] = \lambda(t) \delta t$

Pr[More than one event in $\delta t] = O(\delta t)$

Samples are independently drawn from an identical distribution.