Detection of non-stationary higher-order spike correlation
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We model discretized parallel spike trains uncover dynamic cooperative activities of

by a conditionally independent multivari- neurons in relation to behavior. Time-dependence of triplewise correlation was estimated
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To study cooperative neural network activity, we develop state-space method to : Neuron 2 | E

estimate the time-dependent correlation structures embedded in parallel spike trains. B State-space AnalySlS

Hypothetical Dynamic Cooperative Activity of Neurons Incorporation of the cue signals into the model may be useful for detecting

AR(1) Matrix assemblies related to behavior.

A state-space framework allows regression of a time-dependent system to spike data.
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