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Natural scenes contain richer perceptual information in their spatial phase structure than their ampli-
tudes. Modeling phase structure of natural scenes may explain higher-order structure inherent to the
natural scenes, which is neglected in most classical models of redundancy reduction. Only recently, a
few models have represented images using a complex form of receptive fields (RFs) and analyze their
complex responses in terms of amplitude and phase. However, these complex representation models
often tacitly assume a uniform phase distribution without empirical support. The structure of spatial
phase distributions of natural scenes in the form of relative contributions of paired responses of RFs in
quadrature has not been explored statistically until now. Here, we investigate the spatial phase structure
of natural scenes using complex forms of various Gabor-like RFs. To analyze distributions of the spatial
phase responses, we constructed a mixture model that accounts for multi-modal circular distributions,
and the EM algorithm for estimation of the model parameters. Based on the likelihood, we report pres-
ence of both uniform and structured bimodal phase distributions in natural scenes. The latter bimodal
distributions were symmetric with two peaks separated by about 180°. Thus, the redundancy in the nat-
ural scenes can be further removed by using the bimodal phase distributions obtained from these RFs in
the complex representation models. These results predict that both phase invariant and phase sensitive

complex cells are required to represent the regularities of natural scenes in visual systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Animals have to efficiently cope with natural environment for
their survival. This imposes sensory systems to adapt to regulari-
ties of the natural environment. Barlow (Barlow, 1961) hypothe-
sized that the goal of sensory systems is to reduce redundancy in
the inputs, and represent them by statistically independent fea-
tures to avoid ambiguity. More generally, Bayesian approaches
for modeling perception seek for a suitable prior to represent
environment in the brain. Thus, we gain insight into principles of
neural systems by exploring the statistics of natural environment.
This approach was most successfully applied to visual systems. For
example, analysis of natural scene statistics has explained econ-
omy of neurons in the early visual systems (Field, 1987; Geisler,
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2008; Hyvdrinen, 2010; Simoncelli & Olshausen, 2001; van der
Schaaf & van Hateren, 1996).

Statistical modeling studies of natural scenes also supported the
efficient coding hypothesis. Celebrated examples are linear gener-
ative models that successfully replicated receptive fields (RFs) of
simple cells in the primary visual cortex (Bell & Sejnowski, 1997;
Hyvdrinen, Hurri, & Hoyer, 2009; Olshausen, 1996). However, it
is known that the early linear generative models do not fully
explain the regularities in natural scenes. After training, residual
dependency remains among the coefficients of the basis functions
of these models (Simoncelli & Buccigrossi, 1997; Simoncelli &
Olshausen, 2001; Zetzsche & Rhrbein, 2001). It has been reported
that joint responses of a pair of neighboring oriented Gabor-like
RFs with arbitrary angles exhibit spherical and symmetric depen-
dency (Simoncelli & Olshausen, 2001; Zetzsche & Rhrbein, 2001).
This indicates that the models did not completely remove
higher-order statistics in the natural scenes despite the fact that
perceptually salient features are often characterized by structured
higher-order dependency (Hyvdrinen, 2010; Karklin & Lewicki,
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2003, 2006; Olshausen & Field, 1996; Thomson, 1999). Recently,
several authors proposed nonlinear models that can account for
the higher-order statistics of natural scenes and reproduced non-
linear properties of visual neurons (Cadieu & Olshausen, 2008,
2012; Hyvdrinen & Hoyer, 2000; Hyvdrinen, Hoyer, & Inki, 2001;
Karklin & Lewicki, 2005; Lyu & Simoncelli, 2008; Sasaki,
Gutmann, Shouno, & Hyvdrinen, 2013; Sinz & Bethge, 2010;
Wainwright, Schwartz, & Simoncelli, 2002).

What statistical structure underlies perceptually salient fea-
tures in natural scenes? One important characteristics is illumi-
nated by the fact that an image is not easily perceived when its
phases are randomized, although our perception is rather intact
after amplitude randomization (Oppenheim & Lim, 1981; Hansen
& Hess, 2007; Wichmann, Braun, & Gegenfurtner, 2006). Thus,
phases of an image contain significantly more perceptual informa-
tion than its amplitudes. Indeed, our percept for presence or loca-
tion of visually salient features are strongly correlated with their
spatial phase information (Badcock, 1984; Burr, 1980; Morrone &
Burr, 1988). More specifically, perceptually salient features such
as edges, bars, and even more complex shapes in natural scenes
are characterized by congruence between phases across different
spatial frequencies (Kovesi, 1999; Morrone, Ross, Burr, & Owens,
1986; Wang & Simoncelli, 2003). A human discriminates an edge
and bar based on the degree of the phase congruency (Badcock,
1984; Bennett & Banks, 1991; Burr, Morrone, & Spinelli, 1989;
Field & Nachmias, 1984; Morrone et al., 1986) while such informa-
tion is coded in the ventral visual streams (Henriksson, Hyvarinen,
& Vanni, 2009; Mechler, Reich, & Victor, 2002; Perna, Tosetti,
Montanaro, & Morrone, 2008). Neurophysiological studies demon-
strated that both simple and complex cells in macaque V1 were
sensitive to different degrees of the phase congruency (Mechler
et al., 2002). Moreover, Portilla and Simoncelli developed a method
for synthesizing textures from amplitude and phase statistics
available from responses of complex, oriented wavelets to original
textures (Portilla & Simoncelli, 2000). Applications of this method
successfully demonstrated an involvement of monkey and human
V2 area in encoding such textures (Freeman, Ziemba, Heeger,
Simoncelli, & Movshon, 2013).

Despite the apparent importance of phase information, physio-
logical mechanisms underlying detection of spatial phase (local
phase) information are largely unknown. Image phases may be
detected by combining responses of simple cells possessing two
odd and even symmetric RFs. Indeed, nearby simple cells in the pri-
mary visual cortex exhibit similar Gabor-like RFs except that their
phases are in quadrature (separated in phase by 90°) (Pollen &
Ronner, 1981, see also DeAngelis, Ghose, Ohzawa, & Freeman,
1999 for an extended range of phase differences). Although simple
and complex cells in the V1 area are typically classified by their
phase invariance properties (Albrecht, De Valois, & Thorell, 1980;
Movshon, Thompson, & Tolhurst, 1978; Skottun et al., 1991), recent
studies reported evidence of some complex cells that are highly
sensitive to spatial phase information (Crowder, Van Kleef,
Dreher, & Ibbotson, 2007; Hietanen et al., 2013; Mechler &
Ringach, 2002; Mechler et al., 2002). For example, spike-triggered
covariance analysis of complex cells responding to natural scenes
revealed two dominant subunits that were in quadrature phase
(Touryan, Felsen, & Dan, 2005) and showed that they were more
sensitive to image phases than amplitudes (Felsen, Touryan, Han,
& Dan, 2005). These studies suggested that cells in an intermediate
stage of visual systems might detect local phase structures by non-
linearly combining outputs of simple cells that have similar struc-
ture but are quadrature in a phase space.

Most previous nonlinear generative models of natural scenes
accounted for information available only from their amplitudes,
which resulted in reproducing response properties of phase-
invariant complex cells (Hyvdrinen & Hoyer, 2000; Hyvdrinen &

Koster, 2006; Hyvdrinen et al., 2001). However, recent studies sug-
gested simultaneous yet separate representation of natural scenes
with local amplitude and spatial phase using a complex form of RFs
(Cadieu & Olshausen, 2008, 2012; Olshausen, Cadieu, & Warland,
2009). In this framework, joint responses of a pair of quadrature-
phase RFs are represented in polar coordinates (amplitude and
phase), which are conveniently described by complex values
(Daugman, 1985). These models assume that the joint responses
are factorial in the polar coordinates, and further assume that its
phase distribution is uniform in order to parsimoniously explain
the spherical dependency often observed in the joint responses
of quadrature pairs of RFs. To our knowledge, Wegmann & Zetzsche
first proposed that the polar representation of images is more suit-
able for the statistics of images than the Cartesian coordinates
(Wegmann & Zetzsche, 1990). They introduced an efficient tech-
nique for encoding images by assuming that spatial amplitude
and phase variables are independent, and that the phase variables
are uniformly distributed. Recently, Laparra, Gutmann, Malo, and
Hyvdrinen (2011) considered a bimodal phase distribution as a
prior for complex independent component analysis in modeling
natural scenes (Laparra et al., 2011). The relation of the bimodal
phase distribution to the higher-order dependency in natural sce-
nes, however, must be carefully examined by eliminating artifacts
caused by linear correlations in the responses, using a controlled
set of RFs. While the statistical modeling studies of visual systems
began to utilize the perceptually salient phase information to
encode higher-order statistics of natural scenes, systematic inves-
tigation of the local phase structure of natural scenes based on the
complex form of RFs has not been proposed.

In this study, we investigate spatial phase information of natu-
ral scenes using a variety of complex forms of RFs (complex RFs).
Among the spectrum of Gabor-like complex RFs we tested, two
thirds of the complex RFs exhibited a uniform phase distribution
whereas one third was characterized by a symmetric, bimodal
phase distribution with two peaks being separated by 180°. By a
simulation approach, we further demonstrate that the uniform
and bimodal phase distribution can arise from the interaction
between the non-Gaussianity and higher-order dependency in
the natural scenes. These results indicate that different complex
RFs capture higher-order statistics of natural scenes via different
types of phase distributions. Thus the uniform distribution alone
is insufficient to remove the redundancy of natural scenes, but
the redundancy can be further removed if we consider bimodal
phase distributions.

2. Methods
2.1. Stimuli and preprocessing

We used whitened natural scenes provided by Olshausen and
Field (1997) (The data is available online at http://redwood.berke-
ley.edu/bruno/sparsenet/). Their data sets were processed from the
original Hans van Hateren’s repository (van Hateren & van der
Schaaf, 1998). To extract local phase information from natural sce-
nes, we randomly selected 100,000 patches with size 32x32 from
random locations in the preprocessed images. To ensure that the
mean luminance of all patches were identical, we removed the
DC component (the mean pixel value of the image patch) and
rescaled the pixel values to make their variance equal to 1.

2.2. Complex representation of natural scenes

We model a two-dimensional image I,,(X) using a set of com-
plex basis functions and complex coefficients (Cadieu &
Olshausen, 2008). Here, X represents a discrete spatial position,
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or a pixel, in the image, and m (=1, 2,...) is an image index. Using d
different complex basis functions, this model is described as

d
In(X) = > Re{s{,Ai(X)}. M
i=1

The operation Re{.} returns a real part of a complex value. In Eq.
(1) each complex basis function is decomposed as
Ai(X) = AX(R) + JA[(%), where A (X) and Al() are real and imaginary
components and j = +/—1. Similarly, the complex coefficient is
denoted as s;;n =S¥, + jsf_’m. The asterisk in Eq. (1) denotes the con-
jugate complex. In this paper, we term the complex basis function
as a complex RF and the complex coefficient as a complex response
of the complex RF. We define the real and imaginary components
of the complex RF in the next subsection.

A series of complex responses, S;, (m =1, 2,...), of the i-th com-
plex RF, A;(X), to the natural scene patches, I,,(X), can be computed
from Eq. (1) by taking an inner product of the complex RF with the
natural scene patches (Fig. 1A). Fig. 1B illustrates simultaneous
responses of the real and imaginary components of a Gabor-like
complex RF to 100,000 natural scene patches randomly selected
from whitened natural scenes. The responses of each component
bear sparse distributions as reported previously for this type of
RFs (Field, 1987; Field, 1994; Olshausen & Field, 2004) (see the
marginal histograms next to the axes).

The responses of two Gabor filters that are close in space, orien-
tation, or scale often exhibit circular dependency (Zetzsche &
Rhrbein, 2001) as shown in an example in Fig. 1B. Thus, it was pro-
posed that this dependency may be concisely described by using
polar coordinates (Zetzsche, Krieger, & Wegmann, 1999; Zetzsche
& Rhrbein, 2001). We extracted the spatial amplitude and phase
from natural scenes as follows. In the polar coordinates, the com-
plex response is written as s;, = r;,e/?in, where r;,, and ¢;, are
an amplitude and phase of the complex response, respectively.
Eq. (1) is now written as

A Natural Images

B

Joint response of the complex RF

Complex RF
A=a% A

d
(%) = rim [cOS(;,)AT(R) + sin(@y,)AI(R)|. @)
i=1

By taking the inner product of the complex RF with the natural
scene patches represented in Eq. (2), the amplitude and phase
responses are given respectively by

i =\ (AR, + (A1) )
and

(AR, In(%))
(ARR) In())

The amplitude, r;mm, in Eq. (3) represents the local energy of an
image. Typical complex cells in the early visual cortex express
phase-invariant nonlinearity. Such responses of the complex cells
are well described by the energy model in the form of a squared-
sum of simple cell responses as in Eq. (3) (Adelson, Bergen,
Adelson, & Bergen, 1983; Emerson, Bergen, & Adelson, 1992;
Hyvdrinen & Koster, 2006). The phase, ¢;,, in Eq. (4) represents a
relative magnitude of the responses of the real and imaginary com-
ponents of a complex RF, which are in a quadrature phase. Thus, the
phase, ¢;n,, quantifies the local phase structure of natural scenes.
The local amplitude and phase extraction in the form of Eqgs. (3)
and (4) are widely used in image processing (Knutsson &
Granlund, 1983; Perona & Malik, 1990; Portilla & Simoncelli, 2000).

@;, = arctan

(4)

2.3. Construction of a collection of Gabor-like RFs

Simple cells in the early visual cortex respond to specific visual
features such as particular orientation, spatial frequency and loca-
tion in the visual field (Hubel & Wiesel, 1968; Movshon et al.,
1978). They are also sensitive to spatial phase of a stimulus. It

Responses
R I
S=S+jS
R R
<I ,A>=s_ 2
________ P SpSse-Sy
; 2
<I_,A>=S_ I 1
———————— > 5357’ S >

C

Scale

Phase

o

Fig. 1. Schematic illustration of phase extraction of natural scenes by complex RFs. (A) (Left) Samples from 100,000 whitened natural scene patches from Hans van Hateren'’s
repository (van Hateren and van der Schaaf, 1998) (Middle) real and imaginary parts of an example complex RF as a pair of the same Gabor-like RFs that are separated in
phase by 90°. (Right) A response sequence of the complex RF to the image patches. A complex response to an image patch is composed of inner products of the real and
imaginary parts of the complex RF with the patch. (B) Joint responses of the real and imaginary parts of the complex RF. The abscissa and ordinate are the imaginary and real
responses, respectively. The histograms next to the axes represent their sparse marginal distributions. (C) Examples of real components of complex RFs sorted using 5
different features of orientation, scale, position, phase, and frequency. Each row displays a spectrum of a single feature while the other 4 features are fixed. See Methods for
the parameters of the RFs.
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has been known that the Gabor-like filter is a suitable model of the
RF of the simple cells (Daugman, 1985; Jones & Palmer, 1987). In
this study, we model RFs of simple cells by using two-
dimensional Gabor filters with five parameters that control loca-
tion, frequency, phase and orientation of the filter. Thus the model
covers a variety of RFs from non-oriented blob-like RFs to oriented
ridge-like RFs with different scales, and can describe various selec-
tivity of simple cells in the primary visual cortex. A subset of the
similar RFs is obtained as a tight frame when representing natural
images by sparse coding (Bell & Sejnowski, 1997; Hyvdrinen &
Hoyer, 2000; Olshausen, 1996). To extract local phase information
from natural scene patches, we construct a complex RF (Olshausen
et al., 2009; Pollen & Ronner, 1981) defined by a pair of Gabor fil-
ters that possess the same scales, orientations, and frequencies, but
are separated in phase by 7/2 (An example set of the complex RFs
and their power spectra are shown in Figs. 1A and A1 respectively).

We constructed 3000 Gabor-like RFs with a patch size of
32 x 32 pixels. Each RF is modeled by a two-dimensional Gabor fil-
ter as follows:

(7,;2,ﬂ2y2> }
e\ 27 /) cos(2mw X + ), (5)

BX.Y) =
where X = (x—a)cos(a) — (y —b)sin(a) and y = (x —a)sin(a)+
(y — b) cos(a). Here the two-dimensional Gabor filter is defined as
a sinusoidal grating component with the spatial frequency, w, and
absolute phase, iy, modulated by an elliptical Gaussian window
with the spatial aspect ratio, p, and the scaling parameter, . The
Gabor filter with orientation « is obtained by rotating the coordi-
nate system of the Gabor filter by an angle, —«. The location of
the peak of the Gaussian envelope is controlled by the position
parameters, a and b. For the location of the Gabor filter, we tested
five locations by placing the center of the Gaussian window, (a, b),
at the center, top-left, top-right, bottom-left, and bottom-right
within a patch. The parameter p is the spatial aspect ratio that
determines the ellipticity of the receptive field. Jone & Palmer
suggested the range given by 0.23<p<0.92 for a simple cell
(Jones & Palmer, 1987). Here we used p = 0.60 in the construction
of the RFs.
The product ¢ - » controls the spatial frequency bandwidth of
the RF. In neurophysiological literature, it has been reported that
. . mu+l\/@
the half-response spatial frequency bandwidth, x = log, —=¥-~

1 log(2)
ow—3

2

(in octaves), of simple cells is specified in the range of
0.4 < k < 2.6 (Daugman, 1985; De Valois, William Yund, & Hepler,
1982; Petkov & Kruizinga, 1997). Thus, we used a combination of
different values of 6=2"" (n=0,...,3) and w=1,1.5,...,4.5 to
cover this range of half-response spatial frequency bandwidth
reported for the empirical data. We examined a half-magnitude
orientation bandwidth of 45¢ for all RFs in our analysis. The abso-
lute phase of the grating was divided into five values given by
VY =-7n/2,-7[4,0,7/4 and 7=/2. In order to eliminate the DC

response of the Gabor filters, we subtracted the factor e from
the real component of complex RFs (Lee, 1996). Further, we nor-
malized the individual RFs to a unit norm.

Neurophysiological experiments have shown that the half-
magnitude orientation bandwidth of simple cells in macaques
and rats is ranged from 10° to a non-sensitive orientation. How-
ever, different median ordination bandwidths about 30 to 60° were
observed in simple cells (De Valois et al., 1982). Further, the abso-
lute phases of many simple cells are not restricted to 0 or % i.e,,
even or odd symmetric. Rather they are distributed uniformly
(Burr et al., 1989; Daugman, 1985; Field & Nachmias, 1984;
Movshon et al., 1978). We examined a wide range of RFs (in total
3000) chosen from combinations of these five parameters to repre-
sent empirically observed RFs of the simple cells.

Fig. 1C displays real components of complex RFs that differ in
their orientation, scale, position, phase, or frequency. Each row in
Fig. 1C displays a spectrum of a single feature while fixing the
other 4 features. An imaginary component of each complex RF is
identical to the real component shown in Fig. 1C except that their
phase is different by /2.

Although even and odd Gabor-like filter functions are orthogo-
nal to each other, we found that many complex RFs represented on
discretized pixels within a restricted patch were not orthogonal.
Subsequently their real and imaginary responses were correlated
(Fig. A4, Panel A). The RFs that could not provide a meaningful def-
inition of the local amplitude and phase were mostly characterized
by small scale or low frequency. Thus, we excluded complex RFs if
inner products of their real and imaginary components were larger
than 0.025. Accordingly, the real and imaginary responses of the
selected complex RFs were uncorrelated or had very low correla-
tions (linear correlation coefficients less than 0.043), as expected
from uncorrelated inputs (Figs. A2 and A3). Among the 3000 com-
plex RFs, 2010 (67%) were selected after controlling the orthogo-
nality of the real and imaginary components.

2.4. A mixture model of a circular distribution

To model the observed phase distributions, we constructed a
mixture model that can account for a wide spectrum of distribu-
tions for circular random variables. This model is composed of
two von Mises distributions and a uniform circular distribution.
The equation is given by

2
p(@10) =D P vM(@|Km. f,) +P3 - U(0). (6)
m=1

All model parameters are represented in a vector, 0 = (k1, K2,
U1, U2, P1, P2, P3) Here, a von Mises distribution is given by
UM(P|Km, ) = ey €7~ #n) (m =1, 2), where pn, is a mean,
Km (Km > 0) is a concentration parameter, and Iy (K.,) is the modi-
fied Bessel function with order zero. The uniform distribution is
written as U(¢) = ;-. The parameters {P;,P,,Ps} are the mixing
parameters for the component distributions. They must satisfy
S Phn=1and 0< P, < 1.

The parameters of the mixture model are estimated under the
maximum likelihood principle, using the expectation-maximiza
tion (EM) algorithm developed in the Supplementary section. In
this method, we wused analytical solutions to update the
parameters which were obtained numerically in Banerjee,
Dhillon, Ghosh, Sra, & Ridgeway, 2005. In addition, our approach
has advantages in that it can be easily extended to the analysis
of multivariate circular random variables using a multivariate
von Mises distribution (Mardia, Hughes, Taylor, & Singh, 2008),
which is suitable for the analysis of multivariate phase distribution
of natural scenes. Fig. 2 displays an example of the phase distribu-
tion fitted by this mixture model. In addition, we compared the
Laparra’s phase model (Laparra et al, 2011) with the mixture
model, and found that the modified von Mises model (Laparra’s
phase model) is often inadequate to capture various bimodal dis-
tributions (Fig. A9).

3. Results

3.1. Higher-order statistics in natural scenes is encoded in phase
distribution

In this section, we demonstrate circular dependency among
responses of two Gabor filters that are close in space, orientation,

Vision Research (2015), http://dx.doi.org/10.1016/j.visres.2015.06.009

Please cite this article in press as: MaBouDi, H., et al. Representation of higher-order statistical structures in natural scenes via spatial phase distributions.



http://dx.doi.org/10.1016/j.visres.2015.06.009

H. MaBouDi et al./Vision Research xxx (2015) XxX—Xxx 5

0.4+
Histogram
0.357 = Mixture model
5 === von Mises 1
5 0.3 -~ von Mises 2
g === Uniform
% 025
E
&
3 021
£z
'.E 0.154
E] Ao )
g 0.1 "( \‘\
[a} A A
,l \\
0.05- | Ny 1|
0 ; ; ; . .
- -n/2 0 /2 k3
Phase (Radian)

Fig. 2. Fitting a mixture model to circular bimodal data. The data (a gray histogram)
is phase responses of the example complex RF. The red curve represents a mixture
model fitted to the data according to the EM algorithm developed in Methods. This
mixture model is composed of a uniform distribution (black dotted line) and two
von Mises distributions (green and blue dotted lines) with different location and
concentration parameters.

or scale (Fig. 1C), and show that the dependency can be parsimo-
niously described by using polar coordinates (Egs. (3) and (4)).

Fig. 3A shows an example of complex responses from a repre-
sentative complex RF. The left panel displays responses of a real
and imaginary part of the complex RF (the structures of the com-
plex RFs are shown next to the axes). Again, responses of each com-
ponent are sparse. Furthermore, their joint responses reveal a
spherical distribution, which is different from a diamond-shape
joint distribution expected from the sparse marginal distributions
under the assumption of their independence (Simoncelli &
Olshausen, 2001; Zetzsche & Rhrbein, 2001). This spherical depen-
dency manifests higher-order dependency contained in natural
scenes (Hyvdrinen, 2010; Hyvarinen & Hoyer, 2000; Simoncelli &
Buccigrossi, 1997; Simoncelli & Olshausen, 2001; Zetzsche &
Rhrbein, 2001). The spherical distribution may be concisely
described by the polar coordinates (amplitude and phase) using
Egs. (3) and (4). The middle and right panels in Fig. 2A display
amplitude and phase distributions of the complex responses. Nota-
bly, the phase distribution of this complex RF is uniform. Previous
studies (Cadieu & Olshausen, 2008, 2012; Olshausen et al., 2009;
Wegmann & Zetzsche, 1990) reported this uniform phase distribu-
tion and employed it to parsimoniously describe higher-order
statistics in natural scenes.

However, here we report that responses of many complex RFs
do not express the uniform phase distribution. Fig. 3B and C illus-
trate other representative examples of complex responses. The
joint responses of the complex RFs are characterized by depen-
dency that is visually similar to the one found in Fig. 3A. However,
distinct difference between the two complex RFs can be found in
their phase distributions. In these examples, the phase responses
are characterized by its bimodal structure rather than the uniform
structure. The energy model in Eq. (3) is sufficient to describe the
responses of the complex RF with the uniform phase distribution
shown in Fig. 3A. This is a classical model of a phase invariant com-
plex cell that may receive inputs from simple cells possessing dif-
ferent phase sensitivities (Adelson et al., 1983; Emerson et al.,
1992; Hyvarinen & Hoyer, 2000; Hyvarinen & Koster, 2006). To
the contrary, the energy model is insufficient to explain the com-
plex RFs with the bimodal phase distributions shown in
Fig. 3B and C.

The real and imaginary responses of these complex RFs have
equal variances and are uncorrelated. Therefore, these examples

demonstrate that different complex RFs encode higher-order
statistics in natural scenes with different phase distributions. In
the analysis of various complex RFs, we noticed phase distributions
of different complex RFs varied while their amplitude distributions
were similar. We thus investigate structures of the phase
responses of the complex RFs in greater detail.

3.2. One thirds of complex RFs exhibit symmetric bimodal phase
distributions

We analyzed phase responses of 2010 complex RFs whose real
and imaginary components were orthogonal and their real and
imaginary responses had often equal variances (Fig. A5), using
the mixture model defined in Eq. (6). We fitted the mixture model
to each complex RF, and obtained the likelihood for the mixture
model (Eq. (A1) in Supplementary). We then tested the fitted mix-
ture model against a null hypothesis of a uniform phase distribu-
tion by a likelihood ratio test:

D 2lo likelihood for a null model )
B & \likelihood for the mixture model )’

Here the likelihood for a null model is 100,000/27. If the data
were sampled under the null hypothesis, the test statistic, D, fol-
lows a y2-distribution with 6 degree of freedom (the difference
in the number of free parameters in the two models). To test the
goodness-of-fit of the mixture model, we computed p-values of
the test statistic, D, using 1 — F,2(D; 6), where F . (x; 6) is a cumula-
tive distribution function of the y2-distribution with degree 6. The
distribution of the p-values is displayed in Fig. 4A. After multiple
comparison correction, the test was rejected in 37% of the complex
RFs as shown in an inset of Fig. 4A (the Holm-Bonferroni multiple
comparison correction with a family wise error rate (FWER) =0.05).
Thus the phase distributions of nearly one third of the complex RFs
that we examined significantly deviate from a uniform
distribution.

The structured phase response of the complex RFs resulted from
interactions between the complex RFs and natural scenes. In order
to examine the contribution solely from the phase statistics in nat-
ural scenes, we applied the complex RF to surrogate data sets in
which phases of reference natural scenes were shuffled while their
amplitude components were kept intact (phase shuffled scenes).
To construct phase shuffled scenes, the reference natural scenes
were Fourier transformed, and then the phase component of each
image was shuffled while we kept its amplitude. Finally, the phase
shuffled scenes were obtained by computing the inverse Fourier
transform of the combined shuffled phase and amplitude compo-
nents. For the surrogate phase shuffled scenes, the number of com-
plex RFs that exhibited significant bimodal phase structure was
significantly reduced to 7% (Fig. 4B). For example, the phase
responses of the complex RFs shown in Fig. 3 are all uniformly dis-
tributed when they are applied to the phase shuffled natural sce-
nes (Fig. A6). Fig. 4C displays scatter plots of the log-likelihood
ratios applied to the natural scenes and the phase shuffled scenes.
Red dots in Fig. 4C are complex RFs that exhibit significant bimodal
phase distributions when they are applied to the natural scenes
whereas their phase responses are uniformly distributed when
they are applied to the phase shuffled scenes. Overall, the log-
likelihood of the phase shuffled scenes was significantly smaller
than those of the natural scenes (p < 1e—10, signed-rank test). Sim-
ilarly, only 5% of the complex RFs exhibited a significant bimodal
phase structure when they are applied to white Gaussian signals
(Fig. A8). Thus, we confirmed the contribution of the spatial phase
information of the natural scenes to the observed bimodal phase
structure. In particular, the portion of bimodal phase distributions
increased to 54% when complex RFs restricted to zero absolute
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Fig. 3. Responses of three representative complex RFs. (A) A complex RF that exhibits spherical dependency and a uniform phase distribution. Parameters of the complex RFs
are x = 0.75 ocatave; ¥ = 0 radian; o =  radian. The left panel displays a joint distribution of the responses of the complex RF to 100,000 patches randomly selected from
natural scenes. The correlation coefficient of the real and imaginary responses is 0.0017. The middle and right panels respectively display distributions of the amplitude and
phase variables (i.e., complex representations of the joint responses in the left panel). (B) A complex RF that exhibits a bimodal phase distribution. The presentation format is
same as A. Parameters of the complex RFs are « = 1.65 ocatave; y = 0 radian; o = 27 radian. The correlation coefficient is 0.008. (C) Another example of a complex RF that
exhibits a bimodal phase distribution. Parameters of the complex RFs are « = 1.25 ocatave; y = 37 radian; o = 7 radian. The correlation coefficient is 0.0009.

phase (1 = 0) and low spatial frequencies (w < 2.5)) were applied the low spatial frequencies than the high spatial frequency. Note
to natural scenes (Fig. A7). Thus, the bimodal phase structure is that the real and imaginary components of the complex RFs with
observed more frequently in the responses of the complex RFs with the low spatial frequencies are ridge and edge filters, respectively.
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Fig. 4. Responses of one third of the complex RFs express bimodal phase distributions when they are applied to natural scenes. (A) Histogram of p-values for likelihood ratio
tests when the mixture model is applied to natural scenes. The fraction of the complex RFs for which the null hypothesis of a uniform distribution is rejected by the test is
marked in red (37%, p < 0.05 with Holm-Bonferroni multiple comparison correction). (B) Histogram of p-values for phase shuffled scenes (7% rejected, p < 0.05 with Holm-
Bonferroni multiple comparison correction). (C) Comparison of the log-likelihood ratios of the mixture model applied to natural scenes (abscissa) with those obtained from
phase shuffled scenes (ordinate). Red points represent complex RFs that exhibit significant bimodal phase structure when they are applied to natural scenes while they do not
show a significant bimodal structure (the null hypothesis was not rejected) when they are applied to phase shuffled scenes. Yellow points represent complex RFs for which
the tests were rejected for both natural and phase shuffled scenes. Blue points are complex RFs that did not show significant bimodal structure in response to both natural
scenes and phase shuffled scenes. A green dot is a rare sample that exhibited significant bimodal structure in response to only the phase shuffled scenes.

Therefore, the fact that we observe the significant bimodal phase Table 1
distributions for these low spatial frequency complex RFs indicates The percentage of the complex RFs characterized by the bimodal distribution.

unequal responses of the ridge and edge filters when they are Half-response spatial 0.4- 0.6- 0.9- 12- 1.5-
applied on natural scene. Further, if we restrict the complex RFs frequency bandwidth (octave) 0.6 0.9 1.2 15 2.5
within 1 octave of a frequency bandwidth, significant bimodal Natural scenes 0% 15% 94% 98% 99%
phase distributions are observed in 92% of the complex RFs when Phase shuffled scenes 0% 0% <1% 16% 53%

they are applied to natural scenes whereas this percentage
decreases to 3% for phase shuffled scenes (see Fig. 5 and Table 1

for other ranges of frequency bandwidths). mixing parameters, P; and P,, express close values (Fig. 6D; corre-
In order to determine structures of the significant mixture mod- lation coefficient, —0.27). These results confirm that shapes (i.e.,
els, we investigated the parameters of the fitted mixture models. widths and heights) of the two von Mises distributions in the mix-

First, the peak positions (x; or u,) of the mixture models are ture model are similar. We thus conclude that the phase responses
widely distributed in the parameter space (Fig. 6A), but they are of one third of the complex RFs we examined are characterized by
localized if we restrict complex RFs to those having the zero abso- a symmetric, bimodal distribution. The inset histograms in Fig. 6A
lute phase (Fig. 6A insets, see below for further explanation). Sec- display the results when the complex RFs with the zero absolute
ond, the two peaks are separated by 7 (Fig. 6B). Further, the two phase (i =0) are grouped by either low spatial frequencies
estimated concentration parameters k; and x, of the significant (w < 2.5, left inset) or high spatial frequencies (w > 2.5, right
mixture model are mostly on a diagonal line (Fig. 6C; correlation inset). The peak locations for the low spatial frequencies (left
coefficient, 0.76). Similarly, the scatter plots of the estimated panel) are distributed around #m/2. This result implies that the
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Fig. 5. Phase responses of the restricted complex RFs within 1 octave of a frequency bandwidth. (A) Histogram of p-values for likelihood ratio tests of the mixture model when
complex RFs are applied to natural scenes. The significant bimodal phase distributions are observed in 92% (p < 0.05 with Holm-Bonferroni multiple comparison correction)
of the restricted complex RFs. (B) Histogram of p-values for phase shuffled scenes (3% rejected, p < 0.05 with Holm-Bonferroni multiple comparison correction). (C)
Comparison of the log-likelihood ratios of the mixture model for restricted complex RFs applied to natural scenes (abscissa) with those obtained from phase shuffled scenes
(ordinate). Color codes are the same as in Fig. 4C.
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Fig. 6. Symmetric structure of the significant bimodal phase distributions. (A) Stacked histogram of peak positions of the mixture models fitted to phase distributions
obtained from natural scenes. The red and blue graphs indicate distributions of the two peaks, 1; and p, respectively. The histograms include only the parameters of the
mixture models rejected by the likelihood ratio test. Left and right insets in the panel show similar stacked histograms for complex RFs with zero absolute phase (s = 0),
grouped by either low spatial frequencies (w < 2.5, left inset) or high spatial frequencies ( > 2.5, right inset). (B) Distribution of distances between the two estimated peaks,
1 — Mo (C) Scatter plots of the estimated concentration parameters, k; and x». (D) Scatter plots of the estimated mixing parameters, P; and P,. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

edge structures are more prevalent than the ridge structures in the
natural scenes.

Finally, we examine if the mixture model is sufficient to repre-
sent the observed phase structure. To this end, we assessed
goodness-of-fit of the model using Kolmogorov-Smirnov (KS)
statistics. Fig. 7A displays a distribution of the p-values of the KS
statistics. Only a fraction of samples (15%) marked in black were
rejected by the KS test whereas majority of the samples (gray,
85%) expressed phase distributions that are indistinguishable from
the mixture model (the Holm-Bonferroni multiple comparison
correction with a FWER = 0.05). The goodness-of-fit of the rejected
samples may be improved by a more complex phase model or by
improving a fitting algorithm. However, here we emphasize that
most of the rejected samples exhibited the bimodal structure.

Fig. 7B illustrates the similarity of cumulative distribution func-
tions (CDFs) of a sample data and a fitted mixture model that
expressed a low p-value (0.041). In summary, most phase distribu-
tions of the complex RFs were effectively characterized by the mix-
ture model.

3.3. Higher-order dependency of whitened sparse signals induces
uniform and bimodal phase distributions

We confirmed the presence of higher-order dependency in nat-
ural scenes that are represented by the uniform or bimodal phase
distributions. In this subsection, we demonstrate that simple mix-
tures of sparse source signals replicate the observed higher-order
dependency.
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Probabilistic models of neurons in early visual cortex such as
independent component analysis (ICA) (Bell & Sejnowski, 1997;
Hyvdrinen, 2010) and sparse coding model (Olshausen, 1996;
Olshausen & Field, 1997) assume that responses are independent
and marginally follow super-Gaussian distributions. First, we
demonstrate that the independent sparse responses indicate the
presence of four peaks in the phase distribution when we consider
a complex RF model. Assume that real, s, and imaginary, s/, com-
ponents of a complex response s; = sk +jsf in Eq. (1) are indepen-
dent and sampled from the Laplace distribution, p(x)=£e-/X
where the scale parameter > 0 controls the sparseness of the dis-
tribution. Then, the 2-dimensional distribution of s; is given by

2
R ol B gkt

plst, ) = e . ®)
Moreover, this probability density function can be rewritten in

the polar coordinates as

2
p(ri, ;) = %e*/fnv(lSin<<oi)\+\COS(«),-)\)7 (9)

where r; and ¢; are the amplitude and phase of s;, respectively. By
integrating over the amplitude, we obtain the marginal phase
distribution,

ﬁ (10)

p(@) = /0 P(ri, @)dri = 7 sin(¢;)| + | cos(¢;)])”

This probability density confirms 4 peaks in the distribution of the
phase variable. In Fig. 8A, we show that simulated joint responses
are characterized by a diamond shape, and the corresponding phase
distribution has four peaks. In general, it is expected to observe four
peaks if the real and imaginary responses are independent and
sparse.

Any departure from the four-peaks distribution implies the
presence of higher-order dependency between the real and imagi-
nary components. In order to demonstrate this, we generate
dependent responses by superposing sparse source signals. Con-
sider multiple independent complex source signals V= (v, w,...,
oy Here, v; = o8 +jo) (i=1,2,...,N) where vf and ¢! are indepen-
dent random variables sampled from the Laplace distribution. We
construct dependent responses S = (sy, Sa,. . ., sy)' by linearly mixing
v; by S =PV, where P is an N x N non-singular mixing matrix. We
then whiten the joint responses to eliminate the second-order
dependency of S and normalize variances of the real and imaginary
components to one.

In Fig. 8B, we provide examples of the joint responses in which
we mixed 4 source complex signals. In this example, the phase dis-
tribution is characterized by the bimodal distribution (Fig. 8B Left,
Middle). Another example that exhibits a uniform phase distribu-
tion is shown in the right panels of Fig. 8B. Note that the marginals
of the mixture signals in these examples are sparse (kurtosis are
larger than 3) although the sparseness reduced from that of the
original Laplace distribution because the Laplace distribution is
not a stable distribution. In order to eliminate the possibility that
the observed bimodal and uniform phase distribution is an artifact
of the reduced sparseness due to the mixing, we constructed surro-
gate data sets by removing the higher-order dependency in the
data by independently shuffling the real and imaginary compo-
nents while keeping their marginal distributions. We confirmed
that the phase distributions of the surrogate data exhibited the
characteristic four peaks (Fig. 8B Bottom panels). Together with
the whitening and variance normalization, these simulation results
confirm that the uniform and bimodal phase distributions repre-
sent the higher-order dependency between the real and imaginary
components, and further suggest that sparseness and higher-order
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Fig. 7. The goodness-of-fit of the mixture models. (A) A distribution of the p-values
for the KS statistics from 3000 complex RFs. A bar graph marked in black represents
a fraction of samples rejected by the KS test (multiple comparison correction by the
Holm-Bonferroni method with a family-wise error rate = 0.05). Phase distributions
of these complex RFs were significantly different from the mixture model. (B) A
cumulative distribution of an example data that was rejected by the KS test. The p-
value of the KS statistic for this example is 0.041. Even the rejected sample exhibits
the basic bimodal phase structure.

dependency of the natural scenes are represented by not only the
uniform but also by the bimodal phase distribution.

4. Discussion

In this study, we examined spatial phase information of natural
scenes in the framework of complex representation of images
using Gabor-like complex RFs (Eq. (1) and Fig. 1). Typically phase
distributions were characterized by a uniform or a spectrum of

Vision Research (2015), http://dx.doi.org/10.1016/j.visres.2015.06.009

Please cite this article in press as: MaBouDi, H., et al. Representation of higher-order statistical structures in natural scenes via spatial phase distributions.



http://dx.doi.org/10.1016/j.visres.2015.06.009

10

Independent sparse signals

Joint distribution

Phase distribution

N
b3
o
I
13

Probability density function =
Probability density function

o
=3

-t -w/2 0 w2 =

Phase (Radian)

-T

o
N
G

Probability density function s

-T

H. MaBouDi et al./Vision Research xxx (2015) XxX—Xxx

Dependent sparse signals

Joint distribution Joint distribution

Phase distribution Phase distribution

°
i
a

g

2

S

=

=

€

th |
w2 0 w2 ow w Ee ¢ o=
Phase (Radian) Phase (Radian)

0.25

8

=

2

]

<

z

=

8

e

m(b
-2 0 w2 =™ -t -w/2 0 w2 =™
Phase (Radian) Phase (Radian)

Fig. 8. Higher-order dependency in mixtures of sparse signals can be represented by the bimodal phase distribution. (A) Independent sparse signals. (Top) A joint distribution
of the real and imaginary components. Each component is independently sampled from the Laplace distribution with g = 2. (Bottom) A phase distribution is characterized by
four peaks. (B) Dependent sparse signals. (Left column) (Top) The whitened joint distribution of the real and imaginary components. Each component is a linear mixture of the
independent sparse signals sampled from the Laplace distribution. These components are whitened to have a zero correlation and unit variance. (Middle) A phase distribution
is characterized by the bimodal structure. (Bottom) A phase distribution exhibits four peaks after eliminating its higher-order dependency by randomizing pairs of the real
and imaginary components in the data. (Right column) Another example of the mixture signals that exhibits a uniform phase distribution.

bimodal structure (Fig. 3). The structured phase distributions were
analyzed by the mixture model of the von-Mises and uniform dis-
tributions (Eq. (6)). We estimated the model parameters using the
EM algorithm (Fig. 2, see also Supplementary). Based on the likeli-
hood for the model, the distributions of phase responses from one
third of the examined complex RFs were determined to be bimodal
and symmetrical whereas the phase distributions of the other two
thirds of the complex RFs were uniform (Figs. 4, 5 and A8). The
simulation study suggests that the uniform and bimodal phase dis-
tribution arises from the higher-order dependency of sparse
response of complex RFs applied to natural scenes. Thus, the
higher-order statistics of natural scene are described by the differ-
ent types of phase distributions, depending on features of the com-
plex RFs.

Conventional methods for efficient image representation
assumed that the phase outputs of filters have uniform distribu-
tions (Cadieu & Olshausen, 2008, 2012; Olshausen et al., 2009;

Wegmann & Zetzsche, 1990). Thus our findings make a striking
contrast to this previous assumption. For example, Wegmann &
Zetzsche developed a technique for encoding images given that
amplitude and phase responses are independent, and that phase
responses are distributed uniformly (Wegmann & Zetzsche,
1990). They reported uniform phase distributions in the joint out-
puts of the even and odd filters, but did not report the bimodal
phase distributions. An apparent difference might come from the
fact that they investigated a set of images different from those used
in this study that were more common data sets for natural image
studies. In addition, they did not directly test if the phase
responses are deviated from a uniform distribution. More gener-
ally, none of the previous analyses systematically explored the
structure of phase distributions observed in a wide range of biolog-
ically plausible filters. By such systematic investigation here we
report that a significant fraction of the complex RFs are character-
ized by the bimodal phase distributions.
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Fig. 9. Residual dependencies that were not explained by a factorial model of amplitude and phase. (A) (Left) A copula density function for the joint amplitude and phase
responses of a complex RF shown in Fig. 2A. The density was computed from points whose x- and y-components are given by probability integral transforms of observed
amplitudes and phases using a gamma distribution function fitted to the data and a uniform phase distribution function, respectively. (Right) A copula density function as in
left panel, whereas the ordinate now represents probability integral transforms of observed phases using a mixture model (Eq. (6)) fitted to the data. (B) Example of copula
density functions for a complex RF illustrated in Fig. 2B, which exhibits the bimodal phase distribution. The dependencies were partially removed by using the mixture model
as seen in the less structured copula density in the right column than in the left column. However, the dependency was not removed completely.

In this analysis, we carefully controlled the set of complex RFs.
Although even and odd Gabor-like filter functions are orthogonal
to each other, the filter components represented on discredited
pixels were sometimes not orthogonal. We thus excluded complex
RFs if inner products of the real and imaginary components of the
complex RFs are larger than 0.025. This threshold value was chosen
rather arbitrarily. However, the observed bimodal phase distribu-
tions for the selected RFs are not the artifact of their small correla-
tions. The panel A of Fig. A4 displays the relation between inner
products of real and imaginary RFs (x-axis) and correlation coeffi-
cients of real and imaginary responses (y-axis), for natural and
phase-shuffled scenes. Within + 0.025 of the inner products, the
same level of correlation coefficients (y-axis) were observed for
responses to both natural and phases shuffled scenes. However
the bimodal structures were not observed in the responses to the
phase shuffled scenes (Fig. 4C). Therefore higher absolute values
of the correlation coefficients of real and imaginary responses do
not necessarily cause bimodal phase distributions. A more illustra-
tive example may be found in Fig. 3. In these examples, inner prod-
ucts of the components of the exemplary complex RF that
exhibited bimodal phase distribution (Fig. 3C) is smaller than the
one that exhibited uniform phase distribution (Fig. 3A). Finally,
the simulation study (Fig. 8) demonstrated that the bimodal phase
distributions appear when real and imaginary responses are pre-
cisely uncorrelated.

Our study revealed the importance of the structured phase dis-
tributions in characterizing higher-order statistical structure of
natural images, and encourages researchers to construct extended
statistical models that exploit the phase information. However

existing models of such kind are scarce. In recent Bayesian model-
ing approaches, Olshausen and colleagues modeled nonlinear pat-
terns in the sequence of natural scenes by introducing complex
representations of the images (Cadieu & Olshausen, 2008, 2012;
Olshausen et al., 2009). In this study, they used a prior for temporal
variation of the image phase, but did not consider a prior for spatial
phase (i.e., uniform phase prior). Laparra et al. proposed an exten-
sion of complex independent component analysis for modeling
natural scenes using a bimodal phase distribution as a prior
(Laparra et al., 2011). While their basic assumption was supported
by the current study, their model of a phase distribution lacks the
uniform component. Our results indicate that these Bayesian mod-
els can better describe regularities in natural scenes using a more
appropriate phase prior, namely the proposed mixture model of a
bimodal phase distribution.

These Bayesian models and our analysis assume that response
dependency between the real and complex parts of RFs is factorial
in the space of amplitude and phase. This assumption needs to be
tested empirically. Dependency of two random variables is
described by a copula function (Nelsen, 1999). A copula function
and the corresponding copula density function are a joint CDF
and density of uniform random variables to which any random
variables can be transformed using its own marginal CDF. The cop-
ula functions allow us to visualize dependency structure regardless
of their marginal distributions in a standardized format. Fig. 9 dis-
plays copula density functions of amplitude and phase responses
from the complex RFs shown in Fig. 3. In each column, the abscissa
represents probability integral transforms of amplitudes using a
gamma distribution fitted to the data. The ordinate represents
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probability integral transforms of phases using a uniform distribu-
tion (Left column) or a mixture model (Right column). The copula
density functions should express no structure if the parametric
marginal models faithfully represent the amplitude and phase dis-
tributions and if they are independent. Any structure in the copula
density indicates incorrect marginal models and/or dependency in
the two random variables. Visual inspection of the copula densities
in the left and right columns reveals that the dependency is
reduced by using the mixture model when the underlying phase
distributions are non-uniform (Fig. 9B). However, structured cop-
ula density remains in the right column of Fig. 9B. Thus the facto-
rial code in amplitude and phase with the proposed marginal
models may be only approximation, and future hierarchical models
should describe this dependency for explaining higher-order regu-
larities in natural scenes.

Neurophysiological implications of the structured phase distri-
butions are the presence of phase-sensitive cells beyond V1 simple
cells. While a predominant view on the complex cells and cells in
the higher visual area is that they are phase invariant (Albrecht
et al., 1980;Movshon et al., 1978; Skottun et al., 1991), recent stud-
ies report evidence of phase sensitive cells (Crowder et al., 2007;
Felsen et al., 2005; Hietanen et al., 2013; Mechler & Ringach,
2002; Mechler et al., 2002). Responses of phase invariant complex
cells are described by an energy model (Eq. (3)) (Adelson et al.,
1983; Hyvdrinen & Hoyer, 2000; Hyvdrinen & Koster, 2006;
Pollen, Gaska, & Jacobson, 1988). Indeed, the two thirds of the com-
plex RFs examined in this study exhibited uniform phase distribu-
tions (see Figs. 4 and A6). However, we also demonstrated the
presence of bimodal phase distributions in one third of the com-
plex RFs. According to the efficient coding, the observed complex
RFs with the bimodal phase distribution may predict the presence
of phase sensitive cells beyond V1 simple cells. Thus, the results
suggest that we need an extended model beyond the energy model
that utilizes the phase distribution to explain non-classical phase
sensitive complex cells recently found in early visual cortices
(Crowder et al., 2007; Felsen et al., 2005; Hietanen et al., 2013;
Mechler & Ringach, 2002; Mechler et al., 2002).

In summary, we found that a spectrum of phase distributions is
required to characterize spatial phase information of natural
scenes. According to the efficient coding hypothesis, our result sug-
gests the need of both phase invariant and phase sensitive complex
cells in visual systems in order to describe the regularities of nat-
ural scenes.
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