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Abstract

We show that dynamical gain modulation of neurons’ stimuksponse is de-
scribed as an information-theoretic cycle that generaté®pgy associated with
the stimulus-related activity from entropy produced bytiedulation. To articu-
late this theory, we describe stimulus-evoked activity néaral population based
on the maximum entropy principle with constraints on twoetyf overlapping
activities, one that is controlled by stimulus conditiomsldhe other, termed in-
ternal activity, that is regulated internally in an orgamisWe demonstrate that
modulation of the internal activity realises gain contrbsttimulus response, and
controls stimulus information. A cycle of neural dynamisghien introduced to
model information processing by the neurons during whiehstimulus informa-
tion is dynamically enhanced by the internal gain-modalathechanism. Based
on the conservation law for entropy production, we demaistthat the cycle
generates entropy ascribed to the stimulus-related dctiging entropy supplied
by the internal mechanism, analogously to a heat engingtbdtices work from
heat. We provide an efficient cycle that achieves the higi@sopic efficiency to
retain the stimulus information. The theory allows us torgifg efficiency of the
internal computation and its theoretical limit.

1 Introduction

Humans and animals change sensitivity to sensory stimutlusreadaptively to the stimulus con-
ditions or following a behavioural context even if the stioaidoes not change. A potential neu-
rophysiological basis underlying these observationsiis gedulation that changes responsiveness
of neurons to stimulus; an example is contrast gain-coforoid in retina[[30] and primary visual
cortex under anaesthesia [15] 25], or in higher visual aaeaed by attention [18, 28]. Theoretical
considerations suggested the gain modulation as a nonlipegiation that integrates information
from different origins, offering ubiquitous computatioarnformed in neural systems (se€[5, 32] for
reviews). Regulation of the level of background synaptpis [, 7], shunting inhibitior [3,20, 26],
and synaptic depression [1,29] among others have beenstedges potential biophysical mech-
anisms of the gain modulation (see[40] for a review). Whilelsmodulation of the informative
neural activity is a hallmark of computation performed intdly in an organism, a principled view
to quantify the internal computation has not been proposéd y

Neurons convey information about the stimulus in theindtstpatterns. To describe probabilities of
a combinatorially large number of activity patterns of tle@irons with a smaller number of activity
features, the maximum entropy principle has been sucdbssed [33[39]. This principle con-
structs the least structured probability distributionegithe small set of specified constraints on the
distribution, known as a maximum entropy model. It explginsbabilities of activity patterns as a
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result of nonlinear operation on the specified featureggussoftmax function. Moreover, the model
belongs to an exponential family distribution, or a Gibbstiilbution. Equivalence of inference un-
der the maximum entropy principle with aspects of the dtatismechanics and thermodynamics
was explicated through the work by E. Jayries [11]. Receh#dynhodynamic quantities were used
to assess criticality of neural activity [44,145]. Howevanalysis of neural populations under this
framework only recently started to include ‘dynamics’ ofeunal population [10, 12, 113,123,135437],
and has not yet reached maturity to include computatioropmed internally in an organism.

Based on a neural population model obtained under the mawientropy principle, this study
investigates neural dynamics during which gain of neurgppoase to a stimulus is modulated with
a delay by an internal mechanism to enhance the stimulugiaiion. This process is expected for
dynamics of neurons subject to a feedback gain-modulatexhanism, e.g., via recurrent networks
[31/41[42]. Regardless of the mechanisms, the delay isvdde the gain modulation at different
stages of visual pathways [16,19] 28]. For example, effecbotrast gain-control by attention on
response of V4 neurons to high contrast stimulus appear8@00ns after the stimulus presentation,
but is absent during 100-200 ms time period during which theral response is returning to a
spontaneous rate [28]. We demonstrate that our hypothd§ioamics of delayed gain-modulation
forms an information-theoretic cycle that generates gytascribed to the stimulus-related activity
using entropy supplied by the internal gain-modulationina@ism. The process works analogously
to a heat engine that produces work from heat supplied byvaise. We define entropic efficiency
of gain-modulation performed to retain the stimulus infation, and provide a cycle that achieves
the highest entropic efficiency.

This paper is organised as follows. In Secfibn 2 we consgrmeaximum entropy model of a neural
population by constraining two types of activities, one ikalirectly regulated by stimulus and the
other that represents background activity of neurons,@drfimternal activity’. We point out that
modulation of the internal activity realises gain-modigiatof stimulus response. In Sectioh 3, we
explain the conservation of entropy, equation of statetierteural population, and information on
stimulus. In Sectiohl4, we construct cycles of neural dyrarthiat model stimulus-evoked activity
during which the stimulus information is enhanced by therimal mechanism. We show that an ideal
cycle introduced in this section achieves the highest efiicy in retaining the stimulus information.
Derivations of free energies of the neural population arerearised in Appendix.

2 A simple model of gain modulation by a maximum entropy model

Maximum entropy model of spontaneous neural activity.We start by modelling spontaneous ac-
tivity of IV spiking neurons. We represent a state ofitheneuron by a binary variable = (0, 1)

( = 1--- N). Here silence of the neuron is represented by ‘0’ wheretgitgcor a spike, of the
neuron is denoted by ‘1’. The simultaneous activity of fieneurons is represented by a vector
of the binary variablesx = (x1,...,2x). The joint probability mass functiom(x), describes
the probability of generating the pattexn There are2? different patterns. We characterise the
combinatorial neural activity with a smaller number of dmeristic featured’;(x) (i = 1,...,d,
whered < 2V), based on the maximum entropy principle. Hétéx) is theith feature that com-
bines the activity of individual neurons. For example, thésatures can be the first and second
order interactionsf’;(x) = x; fori = 1,..., N, andFix_;/2)(i—1)+;—i(X) = x;z; fori < j. The
maximum entropy principle constructs the least structymedability distribution while expected
values of these features are specified [11]. By represeafipgctation by(x) using a bracket:),
these constraints are written @5 (x)) = ¢; (i = 1,.. ., d), whereg; is the specified constant.

Maximisation of a function subject to the equality consttsiis formulated by the method of La-
grange multipliers that alternatively maximises the faflog Lagrange function,

Llp] = = p(x)logp(x) —a}_p(x) = > b {ZP(X)E‘(X) - Ci} : @)

wherea andb; (1 = 1,...,d) are the Lagrange multipliers. The Lagrange function isrefional
of the probability mass function. By finding a zero point afvariational derivative, we obtain

p(x) ~ exp <— Z biFi(X)> : )



The Lagrange parametebs are obtained by simultaneously soIvir% = (Fi(x)) —¢;, =0
fori = 1,...,d. Many gradient algorithms and approximation methods haenldeveloped to
search the parameters. Activities of retinal ganglionsc BB/ 39, 44, 45], hippocampal [38], and
cortical neurond [37, 4B, 46] were successfully charasgerusing Ed.]2. In the following, we use
a vector notatiorbg = (b1, ...,b4)T andF(x) = (F1(x),..., F4(x))?. HereH, = bl F(x) is a
Hamiltonian of the spontaneously active neurons. In stedismechanics, Eql 2 is identified as the
Boltzmann distribution with an unit thermodynanhbieta

Maximum entropy model of evoked neural activity. In this subsection, we model evoked activity
of neurons caused by changes in extrinsic stimulus comditidVe define a feature of stimulus-
related activity asX (x) = bI'F(x), where elements db; dictate response properties of each
feature inF(x) to a stimulus. For simplicity, we represent the stimulusteel activity by this
single feature, and consider that the evoked activity isattarised by the two featureld, (x) and

X (x). To model it, we constrain expectation of the internal amuslus features using’ and X,
respectively. Here we assume ti&x), by, andb; are known and fixed. For example, this would
model responses of visual neurons when we change contrastiafulus while fixing the rest of the
stimulus properties. The maximum entropy distributionjsabto these constraints is again given
by the method of Lagrange multipliers. The Lagrange fumcigogiven as

Lp) =—>_p(x)logp(x)

—aZp(X)—B{Zp(X)Ho(X)—U}+a{ZP(X)X(X)—X}- @)

Herea, 8, anda are the Lagrange parameters. By maximising the functignalth respect to,
we obtain the following maximum entropy model,

p(X) = eXp[—BHo(X) + aX(X) - 1/](ﬁ7 a)]’ 4)
wherey (8, a)(= 1 + a) is a logarithm of a normalisation term. It is computed as
(B, @) = log Z e~ BHo()+aX(x) (5)

We cally (3, «) a log-partition function. The Lagrange multipliesandc, are adjusted such that
(Ho(x)) = U and(X (x)) = X. Eq[4 is a softmax function (generalisation of a logistiediion to
multinomial outputs) that returns the population outpatdra linear sum of the features weighted by
—fp anda. With this view, we may alternatively regaftor « as an input parameter that controls
and X . Hereafter we simply calll internal activity, andX stimulus-related activity. Similarly, we
call 5 an internal component, anda stimulus component. We consider that the stimulus compone
« can be controlled by changing extrinsic stimulus condgitivat an experimenter can manipulate.
The stimulus component is written ags) if it is a function of a scalar stimulus conditian such

as stimulus contrast. In contrast, the internal actifitis not directly controllable by the stimulus
conditions. The spontaneous activity is modelleg at 1 anda = 0.

Gain modulation by internal activity. We give a simple example of the maximum entropy model
to show how the internal activity modulates the stimulustesl activity. Figur€Jla illustrates an ex-
emplary model composed of 5 neurons. With these particutalehparameters (see figure caption),
the stimulus component controls activity rates of the first three neurons and theiralations.
The internal componemt controls background activity rates of all neurons. In outirsgs, de-
creasingB increases the baseline activity level of all neurons. Fefll displays activity rates of
the individual neurons(g;) for i = 1,...,5) as a function of the stimulus componentwith a
fixed internal component. Increasingy under these conditions activates the first three neurons
without changing the activity rates of Neuron 4 afld Burthermore, the response functions of the
three neurons shift toward left when the background agtirdtes of all neurons is increased by
decreasinghe internal component (Fig.[db dashed lines). Thus Neuron 1-3 increase sengitivit
to stimulus component. This type of modulation is called input-gain control. Feample, if

1The activity rates of Neuron 4, 5 do not dependcmhecausé, does not contain interactions that relate
Neuron 1-3 with Neuron 4, 5. If there are non-zero interaxgtibetween any pair from Neuron 1-3 and Neuron
4, 5 inby, the activity rates of Neuron 4, 5 increase with the incrdasges of Neuron 1-3.
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Figure 1: A simple model of gain modulation by a maximum epyranodel of 5 neurons. (a) An
illustration of neurons that are activated by a stimulusifoas in a pink area) and controlled by an
internal mechanism (neurons in a yellow area). The modeainstrained by features containing up
to the second order statisticB(x) = (z1,..., o5, 2172, 123, T2T3,...,2475)", Where the first

5 elements are parameters for the individual activitie§ = 1, . ..,5) and the rest of the elements
is the joint activities of two neurons;z; (i < j). We assume that the stimulus-related activity
is characterised by, = (1,1,1,0,0, 0.3,0.3,0.3,0,...,0). The first 3 elements are parameters
for individual activity of the first three neurons (i = 1,2,3). The value.3 is assigned to the
joint activities of the first three neurons, namely the feagsuspecified byt 2o, z123, andzsxs.
The internal activity is characterised by = (2,2,2,2,2,0,...,0), which regulates activity rates
of individual neurons but does not change their interastidip) The activity rates of neurons as a
function of the stimulus componeatat fixed internal component8,= 1.0 (solid line) and3 = 0.8
(dashed line). (c) The stimulus componéatas a function ofv at different internal components.
(d) The relation between the stimulus-related activityand internal activityl. (e) The Fisher
information about the stimulus component

is a logarithmic function of contrastof visual stimulation presented to an animal while recogdin
visual neuronsd(s) = log s), increasing the modulation (decreasifigmakes neurons respond to
multiplicatively smaller stimulus contrast. This moddie ttontrast gain-control observed in visual
pathways[[18, 25,28, 30]. Other types of nonlinearity initiput-output relation can be constructed,
depending on the nonlinearity n(s).

Figure[dc displays a relation of the stimulus componenwith the stimulus-related activityX

at different internal componertt. Similarly to the activity rates (Fid.] 1b), the stimuludated
activity X is augmented if the internal componghis decreased. This nonlinear interaction between
« and g is caused by the neurons that belong to both stimulus-cekate internal activities. In
this example, the stimulus componentalso increases the internal activity (Fig.[dd) because
of increased activity rates of the shared neurons 1, 2, &llgjirigure[1e displays the variance of
stimulus featureX (x) as a function ofv. It quantifies the information about the stimulus component
«, which we will discuss in the next section.



3 The conservation of entropy, equation of state, and stimuis information

Conservation of entropy for neural dynamics. The probability mass function, Eg. 4, belongs to the
exponential family distribution. The Lagrange parameseescalled natural or canonical parameters.
The activity patterns of neurons are modelled as a lineabawation of the two featurel(x) and

X (x) using the canonical parametérs;3, «) in the exponent. Expectation of the features are called
the expectation parametets and X. Either natural or expectation parameters are sufficient to
specify the probability distribution. We review dual sttuie of the two representatioris [2], and
show that the relation provides the conservation law ofcgytr

Negative entropy of the neural population is computed as
—S = (log p(X))
= —B{Ho(X)) + (X (X)) — ¥ (8, )
=-Uf+ Xa—9(B,a). (6)

Since the log-partition function of EQl 4 is a cumulant gaieg function,U and X are related to
the derivatives of) (3, o) as

PO — (o) =~ @
QB0 _ (x(30) = x. ®)

Eqgs[6[7 andl8 form a Legendre transformation fro(f¥, o) to —S(U, X ). The inverse Legendre
transformation is constructed using E§. 6 as wel(3,«) = —8U + aX — (—=S(U, X)). Thus
dually to Eqs[¥ and]8, the natural parameters are obtaingerastives of the entropy with respect

to the expectation parameters,
oS
(55) -7 ©

a8
(3_X)U = —a. (20)

The natural parameters represent sensitivities of theeyto the independent variabl&sand X .
From these results, the total derivativet{U, X) is written as

08 oS
5= () we (%) ax
= BdU — adX. (11)

This explains a change of neurons’ entropy by changes imteenal and stimulus-related activities.
We denote an entropy change caused by the internal actaity'd® = 54U, and an entropy change
caused by the extrinsic stimulus @$°** = ad X, respectively. Then E§.1L1 is written as

dS = dsS™mt — gsext (12)

We remark thatlS is an infinitesimal difference of entropies at two closeeaand its integral does
not depend on a specific transition between the two statesoritrast,dS™ anddSe<* represent
production of entropy separately by the internal and stirsuklated activities, and their integrals
depend on the specific paths. Eg] 12 constitutes the conisered entropy for neural dynamics.
We stress that although it is the first law of thermodynanttos,neurons considered here interact
with an environment differently from conventional therryadmic systenfts While internal energy
of the conventional systems is indirectly controlled viakvand heat, we consider that the internal
activity of neurons is controlled directly by the organisntiternal mechanism. Thus we uggi™*
anddSet, rather than the work and heat, as quantities that neuraismege with an environment.

2\We obtaindU = T'dS — fdX, using8 = 1/T anda = B in Eq.[T1. In this form, the expectation
parametel is a function of(.S, X'). According to the conventions of thermodynamics, we malahternal
energy, I’ temperature of the system, afidorce applied to neurons by a stimulus. It is possible to dles¢he
evoked activity of a neural population using these stantiards of thermodynamics. However, this introduces
the concepts of work and heat.



Equation of state for a neural population. Eq.[8 is an equation of the state for a neural population,
which we rewrite here as
(B, @)
X =1, 13
(B.0) = == (13)

Through the log-patrtition functiom, this equation relates state variabl@sq, and X, similarly to
e.g., the classical ideal gas law that relates temperatuessure, and volume. Figure 1c displayed
the equation of state. We note thais related to the Gibbs free energy (see Appendix). Furtbesm
without loss of generality, we can assume that the grourtd sfathe features is zerdk(0) =
X (0) = 0, wherex = 0 denotes the simultaneous silence of all neurons. We thexnimi(i0) =
e~ ¥, namely

—9(B, @) = log p(0). (14)

Thus —+(8, ) is a logarithm of the simultaneous silence probalfilitySince d(log p(0)) =
dp(0)/p(0), —dy gives a fractional increase of the simultaneous silencégliity of the neu-
rons. Accordingly Ed. 13 states that the stimulus-relatdidity X equals to the fractional decrease
of the simultaneous silence probability by a small change, gfiven.

Information about stimulus. The Fisher informatio/ («) provides the accuracy of estimating a
small change in the stimulus componenby an optimal decoder. More specifically, the inverse
of the Fisher information provides a lower bound of variantan unbiased estimator far from

a sample. For the exponential family distribution, it isagivas the second order derivative of the
log-partition function with respect ta, which is also the variance of stimulus featu¢éx):

2 2 o
J(0) = <(7310§§<X>) > - 2vB.0)

_0X _

= =
The first equality in the second line of EgJl15 is obtained githe first order derivative af, namely
the equation of state (EQ.113). The second equality il ElgepBesents the fluctuation-dissipation
relation of the stimulus feature. The equalities show thatRisher information can be computed in
three different manners given that the internal compogeastfixed: (i) the second derivative @f
with respect tay using the simultaneous silence probability, (ii) the datike of X with respect to
« using the equation of state, or (iii) the variance of the stim feature.

(X (%)) — (X(x))*. (15)

The Fisher information computed at two fixed internal congraa was shown in Fifg] 1d. The stim-
ulus componentr becomes relatively dominant in characterising the newtlity if the internal
componenp3 decreases. This results in the larger Fisher informali@n) for the smaller internal

componeng at givena. If the stimulus conditiors controlls the stimulus component ass), and

itis not related tg3, the information about is given asa(g—(ss) J(oz)a%—(:).

4 Information-theoretic cycles by a neural population

We now introduce neural dynamics that models dynamicalgadulation performed by an inter-
nal mechanism while neurons are processing stimulus. $trece are neurons that belong to both
stimulus-related and internal activities, the internathsnism not only changes the internal activity
but also the stimulus-related activity, which realisesrttadlulation. From an information-theoretic
point of view, this process converts entropy generated byrtternal mechanism to entropy associ-
ated with stimulus-related activity after one cycle of tleairal response is completed. To explain
this in detail, we first provide an intuitive example of dedaygain-modulation using a dynamical
model, and then provide an ideal cycle that efficiently eleastimulus information. Using the lat-
ter model, we explain why the process works similarly to at leegine, and show how to quantify
efficiency of the gain-modulation performed by the intenrmalchanism.

3Importantly,— is a logarithm of the simultaneous silence probability presti by the model, Efl4. The
observed probability of the simultaneous silence couldifferdnt from the prediction if the model is inaccu-
rate. For example, an Ising model can be inaccurate, andsitsivawn that neural higher-order interactions
significantly contribute to increasing the silence probhji241(38].
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Figure 2: The delayed gain-modulation by internal activilthe parameters of the maximum
entropy model V' = 5) follow those in Fig[d. (a) An illustration of delayed gamedulation
described in Eq6.16 andl17. The stimulus increases thelsBroamponent that activates Neuron

1, 2, and 3. Subsequently, the internal comporkistincreased, which increases the background
activity of all 5 neurons. We assume a slower time constaribfogain-modulation than the stimulus
activation ¢z = 0.1 andr, = 0.05). (b) Top: Dynamics of the stimulus and internal components
(solid lines,v = 0.5). The internal componernt without the delayed gain-modulation = 0)

is shown by a dashed black line. Middle: Activity rates [h.@f Neuron 1-3 with (solid red)
and without (dashed black) the delayed gain-modulationttddm The Fisher information about
stimulus component (Eq.[I5). (c) TheX-« (Left) andU-f (Right) phase diagrams. A red solid
cycle represents dynamics when the delayed gain-modulat@pplied ¢ = 0.5). The dashed line

is a trajectory when the delayed gain-modulation is notiadib the population( = 0). (d) Left:
The U-g3 phase diagrams of neural dynamics with different combamatiof3 and~ that achieve
the same level of the maximum modulation (the minimum valug e= 0.9). Right: The Fisher
information about the stimulus componentor different cycles. The colour code is the same as in
the Left panel. The inset shows the Fisher information abbmistimulus intensity (Eq.[18).

An example of delayed gain-modulation We first consider a simple dynamical model of delayed
gain-modulation. We use the feature vectay,andb; based on those described in Hig. 1. In this
model, neurons are activated by a stimulus input, whichegulosntly increases modulation by an
internal mechanism (Fi@] 2a). Such a process can be modbktedgh dynamics of the controlling
parameters given by,

2a(t) = —Taalt) + s e t/ma (16)
T5(t) = =B(t) + fo —1a(t) 17
for ¢ > 0. Heres is intensity of an input stimulus. Neurons are initially as@ontaneous state:

a(0) = 0 andB(0) = By = 1. The top panel of Figurgl 2b displays the dynamicsy@f) and
B(t). The population activity is sampled from the maximum emngropdel with these dynamical



parameters. Here we consider a continuous-time repregentd the maximum entropy modkl
[12,13]. The activity rates of neurons are increased by $ayad gain-modulation (solid lines in
Fig.[2b Middle) from those obtained without the modulatigr 0; dashed lines). Accordingly, the
information about the stimulus componentontained in the population activity as quantified by
the Fisher information (E{._15) increases and lasts longeéhd delayed gain-modulation (Fig. 2b
Bottom). Note that in this example, the information abowet $timulus strength is carried in both
B(t) anda(t) as time passes. The result obtained from the Fisher infoomabouts using both
B(t) anda(t) is qualitatively the same as the result of the Fisher infdionaabouta (not shownf.

The U-3 phase diagram (Fidl] 2c Left) shows that dynamics withoutgie-modulation is rep-
resented as a line becausés constant. In contrast, dynamics with the gain-modutefams a
cycle because weaker and then stronger modulation (largktteen smallep) is applied to neu-
rons when the internal activity increases and then decreases, respectively. Similaglgythamics
forms a cycle in theX -« plane (Figl2c Right) if the stimulus activity is augmented by the delayed
gain-modulation. By applying the conservation law for epyr (Eq[I2) to the cycle, we obtain

0= 7{ BdU — jé adX. (19)

Here § 3dU = AS™ is entropy produced by the internal activity during the eydue to the de-
layed gain-modulation, anfl 3dU = AS°** is entropy produced by the activity related to extrinsic
stimulus condtions. These are the areas within the ciroléiseé phase diagrams. Eql19 states that
the two cycles have the same argaS{"t = ASxt).

The left panel in Figur€l2d displays tli&-3 phase diagram for dynamics with given maximum
strength of modulation (the minimum value g8f. Among these cycles, larger cycles retain the
information about the stimulus componenfor a longer time period (Fid.J2d Right). The same
conclusion is made from the Fisher information abho(Fig.[2d an inset in Right panel). The larger
cycles were made because the modulation was only weaklyeapiol neurons when the internal
activity U increased, then the strong modulation was applied wheecreased. Such modulation
is considered to be efficient because it allows neurons &irréite stimulus information for a longer
time period by using the slow time-scale®ivithout excessively increasing activity rates of neurons
at its initial rise. In the next section, we introduce thegkst cycle that maximises the entropy
produced by the gain modulation when the maximum strengthe@mMmodulation is given. Using
this cycle, we explain how the cycle works analogously toa kagine, and define efficiency of the
cycle to retain the stimulus information.

The efficient cycle by a neural population. The largest cycle is made if the modulation is not
applied when the internal activify increases, then applied whéhdecreases. Figuté 3 displays a
cycle of hypothetical neural dynamics that maximises theogy production when the ranges of the
internal component and activity are given. The model pataradollow those in Fid.J1. This cycle
is composed of four steps. The process starts at the statevhiett neurons exhibit spontaneous
activity (3 = By = 1, a = 0). Figure[3a displays a sample response of the neural piogulat

a stimulus change. Figulreé 3b and c display #ex andU-3 phase diagrams of the cycle. Heat
capacity of the neural population and the Fisher inforrmagiboutw are shown in Fig.]3d. Details
of the cycle steps are now described as follows.

“Under the assumption that rates of synchronous spike eseate withO(A*), whereA is a bin size
of discretisation and: is the number of synchronous neurons, Kassl. [12] proved that it is possible to
construct a continuous-time limitY — 0) of the maximum entropy model that takes the synchronoustgve
into account. Here we follow their result to consider thetoarous-time representation.

*Whena andg are both dependent on the stimulus, the Fisher informationta is given as

T
J(s) = aaégi) Ja‘;(ss), (18)

where8(s) = (—8,a)” andJ is a Fisher information matrix given by E.123, which will bisclissed in
the later section. We computed [Eq] 18 using analytical mwistof the dynamical equations given@&) =

SLetme andf(t) = 1 — o { T (et — et — gt

T3 —Ta TR —Ta
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Figure 3: The efficient circle by a neural populatio¥ (= 5). The parameters of the maximum
entropy model follow those in Fi§] 1. The cycle starts from #hate A at whick8 = 8z = 1 and

a = 0. See the main text for details of the steps. The efficiencyisf tycle is0.14. (a) Top:
Spike raster plots during the cycle. Middle: Activity rai@sneurons. Bottom: The cycle steps.
(b) The X-a phase diagram. (c) ThEé-3 phase diagram. (d) LeftX v.s. heat capacity. The heat
capacity is defined a8 = (h?) — (h)?, whereh = — log p(x) is information content. Right: Fisher
information about the stimulus component

A—B Increased stimulus responséhe stimulus-related activitX is increased by increasing
the stimulus component while the internal component is fixed gt= Sy . In this process
the internal activityU also increases.

B—C Internal computation An internal mechanism decreases the internal compaghevttile
keeping the internal activityd = 0). In this process the stimulus-related activity
decreases. The process ends at (..

C—D Decreased stimulus respons€he stimulus-related activitX is decreased by decreasing
the stimulus componemnt while the internal component is fixed at= 3. In this process
the internal activity also decreases.

D—A Internal computation An internal mechanism increases the internal compofenhile
keeping the internal activityd = 0). In this process the stimulus-related activity
increases. The process endgat Sy .

The processesBC and D—A represent additional computation performed by an intenearal
mechanism on the neurons’ stimulus information procesding applied after the initial increase
of stimulus-related activity during A B, therefore manifests delayed modulation. Without these
processes, the neural dynamics is represented as a lireeph#ése diagrams. The Fisher information
aboutx also increases during the process between C and DL{Fig./&bagel). We reiterate that the
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ASin Entropy produced by
stimulus-related activity
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engine

int
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Figure 4: An information-theoretic cycle by a neural popiola.

Fisher information quantifies the accuracy of estimatinmalschange inx by an optimal decoder.
Thus operating along the path between C and D is more adwemiaghan the path between A and
B for downstream neurons if their goal is to detect a changhenstimulus-related activity of the
upstream neurons that is not explained by the internalifctiv

Interpretation as an information-theoretic cycle. We start our analysis on the cycle by examining
how much entropy is generated by the internal and stimwdieted activities at each step. First, we
denote byA S andASEY the entropy changes caused by the internal activity dutiegptocess
A—B and C-D, respectively. Since the internal compongrnis fixed at3y during the process
A—B, we obtainASIt = By AU, where AU is a change of the internal activity (see Hi§. 3c).
This change in the internal activity is positivAl/ > 0). Since the internal activity does not
change during B>C and D—A, a change of the internal activity during-€D is given by —AU
(Note that the internal activity is a state variable). Weaib\SZ, = —3,AU for the process
during C—D. The total entropy change caused by the internal actiuitynd the cycle is given as
AS}{’% + AS}% = (Bg — Br)AU, which is positive becausey > S, andAU > 0. Thus the
internal activity increases the entropy of neurons durirgdycle. Second, we denote BySext
the total entropy change caused by the stimulus-relatédtgaturing the cycle. According to the
conservation law (Ed.12) applied to this cycle, we obtain

0=ASPE + ASEE — ASXE, (20)

Note that the sign oAS®* = ASYE + ASZE is positive. Hence the stimulus-related activity
decreases the entropy of neurons during the cycle.

This cycle belongs to the following cycle that is analogaus theat engine (Fi@l 4). In this para-
graph, we temporarily usgeceive entropyand emit entropyto express the positive and negative
path-dependent entropy changes caused by the internaharss-related activity in order to fa-
cilitate comparison with a heat endfhen this cycle, neurons receiantropyas internal activity
from an environment4 Si"* > 0) and emitentropyto the environment4S:"t < 0). The received
entropyas the internal activity is larger than the emiteadropy(ASint + ASnt > (). The surplus
entropyis emitted to the environment in the form of the stimulustetl activity  AS®* < 0).
Thus we may regard the cycle as the process that producadsimelated entropy using entropy
supplied by the internal mechanism. We hereafter denaecttule as an information-theoretic cy-
cle, or engine. The cycle in Fifl 2 is also regarded as anrimition-theoretic cycle by separating
the process at which the internal activity is maximised. Theservation law prohibits a perpet-

Here we usentropysynonymously with heat in thermodynamics to facilitate thenparison with a heat
engine. However this is not an accurate description bedaesentropy is a state variable.
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ual information-theoretic cycle that can indefinitely puoé the stimulus-related entropy without
entropy production by the internal mecharilsm

Efficiency of a cycle. As we discussed for the example dynamics in Elg. 2, we mayidenthat
the modulation is efficient if it helps neurons to retain stios information without excessively
increasing the internal and stimulus-related activitiesrd the initial response. Such a process was
achieved when gain modulation was only weakly applied taoesiwhen the internal activity’
increased, then strong gain modulation was applied viheecreased. We can formally assess this
type of efficiency by defining entropic efficiency, similattythermal efficiency of a heat engine. It
is given by a ratio of the entropy change caused by the stisadlated activity as opposed to the
entropy change gained by the internal activity as:

Asext |Asintt|
= — =1 o 21
7= Agm Agine @)

For the proposed information-theoretic cycle in [Elg. 3sicomputed as

_lasEs| B
ASE Bu’
which is a function of the internal componenty; and 5. This cycle is the most efficient in
terms of the entropic efficiency defined by Egl 21 when the dstjand lowest internal components
and activities are given. The square cycle in fhe3 phase diagram (Fidl 3c) already suggests
this claim, and we can formally prove this by comparing thfeimation-theoretic cycle with an
arbitrary cycleC whose internal componeptsatisfies3;, < § < fgull. Thus the proposed cycle
bounds efficiency of the additional computation made by #laykd gain-modulation mechanism.
We call the proposed cycle in Figl 3, the ideal informatibeeretic cycle. Note that this cycle is
similar to, but different from the Carnot cyclel [6] that cae kealised by replacing the processes
B—C and D—A with adiabatic processes. The Carnot cycle achieves ttekithermalefficiency.

Nle = 1 (22)

Geometric interpretation. Finally, to consider conditions for the information-thetic cycle, we
introduce geometric interpretation of the cycle. Let usaerthe internal and stimulus components
as® = (—B,a)T. In addition, we represent the expected internal and stimfdatures by; =

(U, X)T. The parameter§ andn form dually flat affine coordinates, and are calle@nd -
coordinates in information geometiy [2]. For the ideal imfiation-theoretic cycle, we indicate the
parameters at A, B, C, and D using a subscrip@ @fr . For example the parameters at A érg
andn 4.

The first process A»B of the ideal information-theoretic cycle is a straightlifgeodesic) between
6 and@g in the curved space af-coordinates. It is called e-geodesic. In addition, therimal
componen} is fixed while the stimulus component decreases, therefieretgeodesic is a vertical
line in the#-coordinates. The second process8 is the shortest line betweey; andn in the
curved space of-coordinates. The path is called an m-geodesic. In additieninternal activity
U is fixed while the stimulus-related activity decreasestdftge the m-geodesic is a vertical line
in the n-coordinates. Similarly, the process+D is an e-geodesic, and the process:B is an
m-geodesic.

The change in the internal componehtduring the processes along m-geodesic manifested the
internal computation in the ideal information-theoretycle. A small change i is related to a
change i asdn = Jd@. HerelJ is the Fisher information matrix with respectfolt is given as

(bo,bg) (bg,b1)

J= (b1,bg) (b1,b1) |’

(23)

"This is synonymous with the statement that the first law fmitéa perpetual motion machine of the first
kind, a machine that can work indefinitely without receivhent.

8Let us consider the efficienay achieved by an arbitrary cycté during which the internal componept
satisfies;, < 8 < Bm. Let the minimum and maximum internal activity in the cyckelbnin andUmax. We
decompos€ into the pathCi from Umin t0 Umax and the pati€s from Umax t0 Umin during which the internal
component is given g%, (U) andBz (U), respectively. Because the cycle acts as an engine, weteX{&c) >
B2(U). The entropy changes produced by the internal activityndutihe pathC; (i = 1, 2) is computed as

ASEE = [T B (U)dU < B [ dU = B (Umax — Umin) @Nd|ASEY| = | [/ B2(U) dU| >

Umin max

|BL fgl;“i“ dU| = Br(Umax — Umin). Hence we obtaitASEY |/ASEY > Br/Bw, 0rn < ne.

ax
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where(b;,b;) = bYGb; (i, = 0,1) is an inner product of the vectots andb; with a metric
givenbyG = (F(x)F(x)T)—(F(x))(F(x))T. Note that'bg, by) is equivalentto Eq.15. Likewise,
the small change in is related to the change thby d6 = J~1dn. Since the m-geodesic processes
B—C and D—A are characterised hyn = (0,dX)7, the small change ifi-coordinates is given as

—(bo, b1)

6 = { (b bo)

} |J|tdX, (24)

Conversely, the internal mechanism needs to change threahtend stimulus component according
to the above gradient in order to accomplish the most effiaigale. Thus if the internal mecha-
nism can not access the stimulus componenhe ideal information-theoretic cycle is not realised.
Further, if(bg, b;) = 0, the internal componert is not allowed to change, which however means
that the entire process does not form a cycle. Therefore wese(bg,b;) # 0. This equation
indicates that the modulation by an internal mechanism lisesed through the activity features
shared by the two components. Accordingly, this conditwiolated if neurons participate in the
stimulus-related activity and neurons subject to the imdemodulation do not overlap (hamely if
neurons that appear in the features corresponding to nanetements ob, are separable from
those ofb;). In general, in order to make a change of the internal corapbfi influence the
stimulus-related activityX, therefore controls stimulus information, one requifleg, b;) # 0 be-
causelX = —(by, bg)dpS + (b1, by )da fromdn = Jd6.

5 Discussion

In this study, we provided hypothetical neural dynamics #fficiently encodes stimulus informa-
tion with the aid of delayed gain-modulation by an intern&amanism, and demonstrated that the
dynamics forms an information-theoretic cycle that aatsilairly to a heat engine. This view pro-
vided us to quantify the efficiency of the gain-modulationgtaining the stimulus information. The
ideal information-theoretic cycle introduced here bouhte entropic efficiency.

As an extension of a logistic activation function of a singéiron to multinomial outputs, the maxi-
mum entropy model explains probabilities of activity patteby a softmax function of the features,
therefore allows nonlinear interaction of the inputs (heendc) in producing the stimulus-related
activity X (Fig.[). This interaction was caused by shared activityuiiess inb; andbg. The gain
modulation more effectively changes the stimulus-relaeiivity if the features of the stimulus-
related and internal activities resemble (i@, bo) is close tol), which may have implications
in similarity between evoked and spontaneous activitid} fiat can be acquired during develop-
ment [3].

The model's statistical structure common to thermodynanftice Legendre transformation; see
Appendix) allowed us to construct the first law for neural ayrics (Eq[IR), the equation of state
(Eq.[13), fluctuation-dissipation relation (EqgJ] 15), andnadynamics similar to a thermodynamic
cycle (Figs[2 and]3) although we emphasised the differefincesconventional thermodynamics in
terms of the controllable quantities. The dynamics formgdecif the gain modulation is applied
after the initial increase of the stimulus-related acyivithis scenario is expected when the stimulus
response is modulated by a feedback mechanism of recuetmdrks [31, 41, 42], and is associated
with short-term memory of the stimulus [31)32]. Consistemtith the idea of efficient stimulus-
encoding by a cycle, effect of attentional modulation onrakresponse typically appears several
hundred milliseconds after stimulus onset (later than tieebof the stimulus responsg)[[9][17, 19,
22]28| 34] although the temporal profile can be altered Bydasign[[9, 117].

To apply the theory to empirical data, the internal and shimfieature need to be specified. Since
even spontaneous neural activity is known to exhibit ongaynamics([14], estimation of these
features is nontrivial. The optimal sequential Bayesigioathms have been proposed to smoothly
estimate the parameters of the neural population model Wiesnvary in time([[35=37]. These ap-
proaches can be used to select dominant features of spontaard evoked activities, and then to
estimate the time-varying internal and stimulus-relatgonents. By including multiple stimulus
features in the model, the theory is expected to make gasimétpredictions on competitive mech-
anisms of selective attention [17/21|22, 27]. The congemdaw of entropy imposes competition
among the stimuli given a limited entropic resource gemeray the internal mechanism.
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In sum, a neural population that works as an informatiomitbtic engine produces entropy ascribed
to stimulus-related activity out of entropy supplied by aternal mechanism. This process is ex-
pected to appear during stimulus response of neurons $ubjésedback gain-modulation. It is
thus hoped that quantitative assessment of the neural dgaa®s an information-thertoeic cycle
contributes to understanding neural computation perfdrimternally in an organism.

Acknowledgments

The author thanks C Donner, D Hirashima, S Koyama, and S Afparcritically reading the
manuscript.

Appendix: Free energies of neurons

In this appendix, we introduce free energies of a neural [adjom. Let us first discuss the relation
of state variables and free energies that appear in our sisafthe neural population with those
found in conventional thermodynamics. Assume that thelsthahge in internal activity of neurons
has the following linear relations to entropy expected featur&’, and the number of neuroié:

dU = TdS + fdX + pdN. (25)

Eq.[25 is the first law of thermodynamics, and the parameterdeanperaturd’, force f, and
chemical potential:. The first law describes the internal activity as a functiéor{.® X, N). In
thermodynamics, the Helmholtz free enetlgy= U — T'S , Gibbs free energyz = F — fX, or
enthalpyH = U — fX are introduced to change the independent variabl€Et&, N), (T, f, N),
and(S, f, N), respectively. These free energies are useful to analgfieeisnal or other processes
in which only one of the independent variables is changedekample, the Helmholtz free energy
can be used to compute the work done by fofcender the isothermal condition. However, the
concepts of the force and work may not be directly relevarfiormation-theoretic analysis of a
neural population. Here we introduce the free energiesatgamore consistent with the framework
based on entropy changes.

The first law is alternatively written as
dS = 8dU — adX — ~dN, (26)

Herewe used® = 1/T,«a = f/T,andy = p/T. This first law describes a small entropy change as
a function of(U, X, N'). The parameters are defined as

B(U,X,N) = (%)XN, (27)

(U, X,N) = — (g—i) : (28)
N,U

~(U,X,N) = — (g—;)”. (29)

We change the independent variabléo 3. For this goal, here we define thealedHelmholtz free
energy.F as
F=5-pU. (30)

Note that7 = —gF. Itis a function that changes the independent variablas {6, X, V) to
(8,X, N). This can be confirmed from the total derivative®f dF = dS — d(8U) = —UdfS —
adX — vdN. From this equation, we have

U(B,X,N)——<Z;;>XN, (32)
a(B,X,N)=— <§—§>N,B, (32)
M= (55) (39

13



The entropy change caused by the stimulus-related actifign X changes fronk; to X5 is given

by the area under the curve af 3, X, N) in the X-a phase plane. From EQ.132, if the process
satisfiesds = dN = 0, the entropy change is computed as reduction of the scalbdheéz free
energy as

X2
AGERt / o(B,X,N)dX = F(B, X2, N) — F(B, X1, N). (34)
X1

Further change of the independent variables f(gmX, N) to (8, «, N) is done by introducing the
scaledGibbs free energy:

G=F+aX=5—-8U+aX. (35)
Note thatG = —pBG. The independent variables of the Gibbs free energy(érer, N) since
dG = dF + (daX + Xdo) = —Udp + Xda — vdN. From this equation, we find
ag)
— =-U(B,a,N), 36
( ) x (B ) (36)
(52)  =xGam. @7)
da 5N

Note that the definition of the Gibbs free energy by Ed. 35 imioled from Eq[b if we identify
G = 1. Accordingly, Eqs_36 arldB7 coincide with EQk. 7 &hd 8.
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