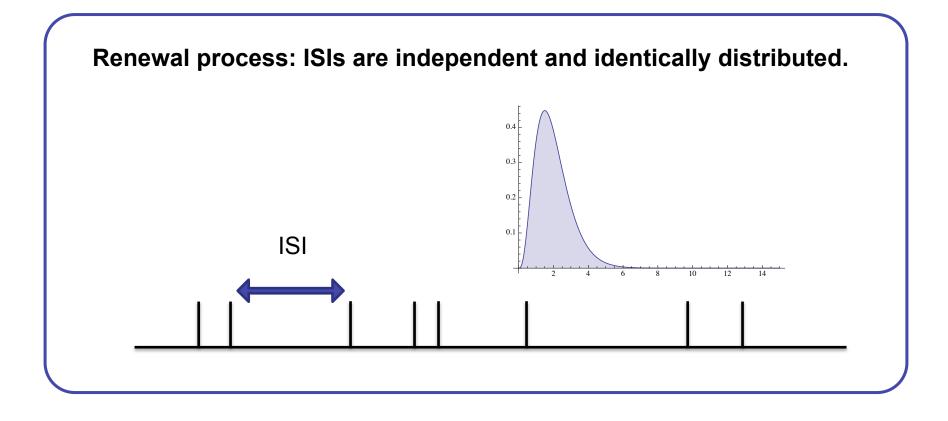
RENEWAL PROCESS

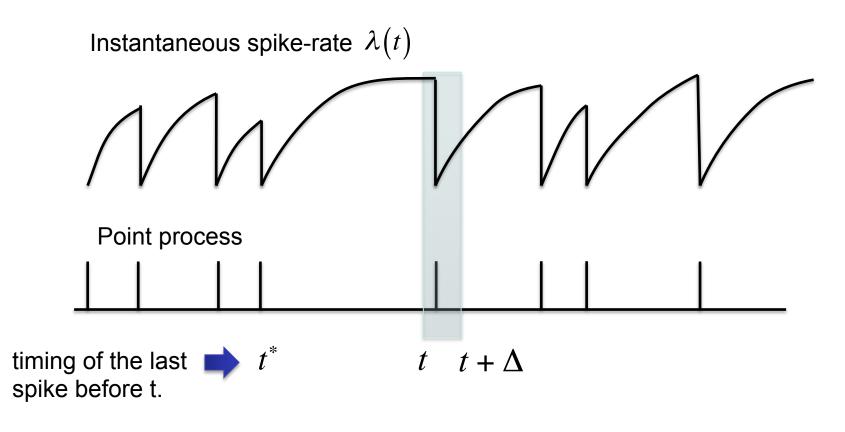
Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG

Renewal and non-Poisson processes 1

Renewal process



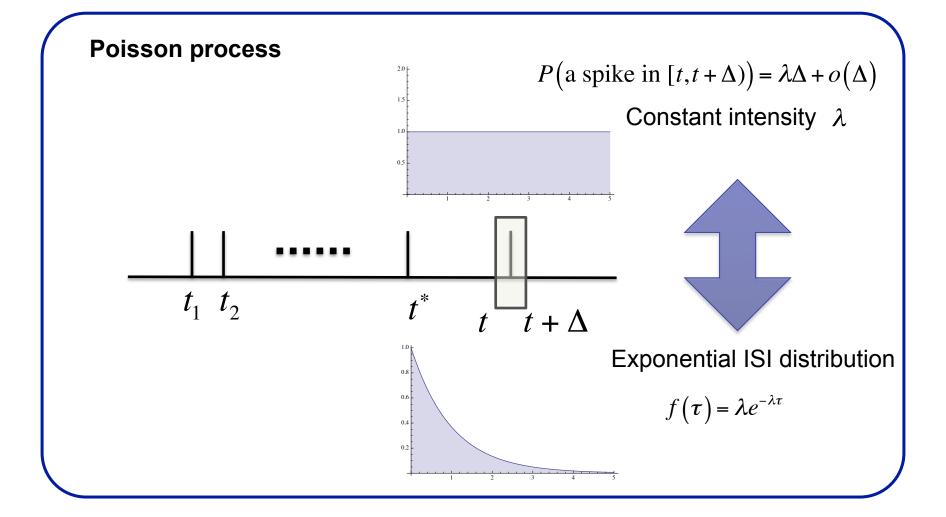
Instantaneous rate of a renewal process



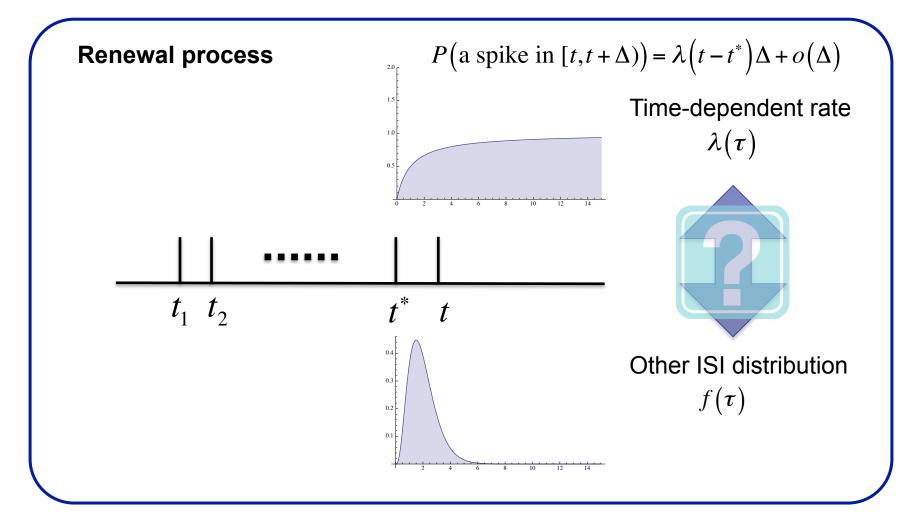
$$P(\text{a spike in } [t, t + \Delta)) = \lambda(t - t^*)\Delta + o(\Delta)$$

Instantaneous rate depends on the elapsed time from the last spike.

Instantaneous rate and ISI-density

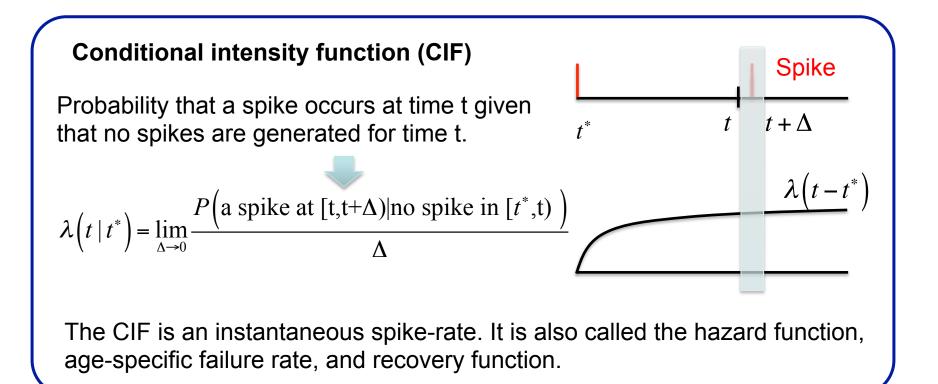


Instantaneous rate and ISI distribution

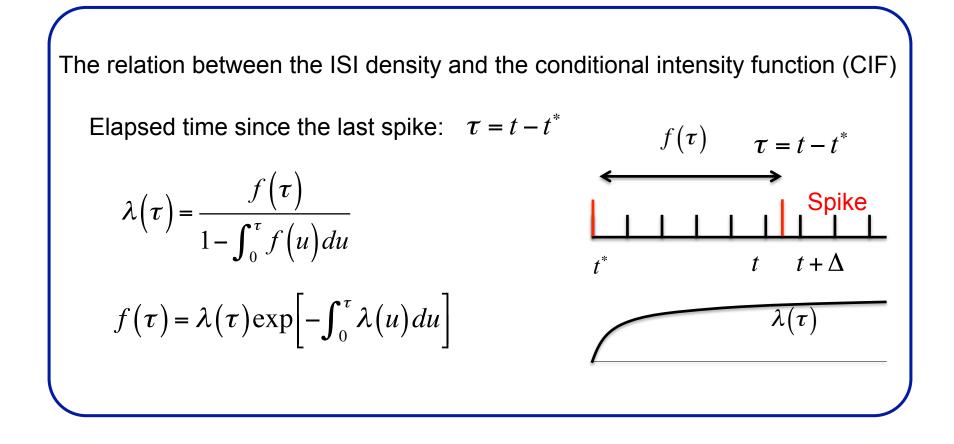


What is the relation between ISI and instantaneous rate for a renewal process?

Conditional intensity function (CIF)



ISI density and CIF



Conditional intensity and ISI distribution

Relation between the conditional intensity function and ISI distribution

$$\lambda(\tau) = \lim_{\Delta \to 0} \frac{P(\tau < X \le \tau + \Delta | X > \tau)}{\Delta} \qquad X : \text{Random variable for ISI.}$$
$$= \lim_{\Delta \to 0} \frac{P(\tau < X \le \tau + \Delta, X > \tau)}{\Delta} \frac{1}{P(X > \tau)}$$
$$= \lim_{\Delta \to 0} \frac{P(\tau < X \le \tau + \Delta)}{\Delta} \frac{1}{P(X > \tau)}$$
$$= \frac{f(\tau)}{\overline{F}(\tau)}$$
$$= \frac{f(\tau)}{1 - F(\tau)}$$

Homework 2-1

Obtain the relations,
$$f(\tau) = \lambda(\tau) \exp\left[-\int_0^{\tau} \lambda(u) du\right]$$

By rewriting the relation and ISI distribution, we obtain $\lambda(\tau) = \frac{-\overline{F}'(\tau)}{\overline{F}(\tau)} = -\frac{d}{dt} \log \overline{F}(\tau)$ Thus, $\frac{d}{d\tau} \log \overline{F}(\tau) = -\lambda(\tau)$, or $d \log \overline{F}(\tau) = -\lambda(\tau) d\tau$

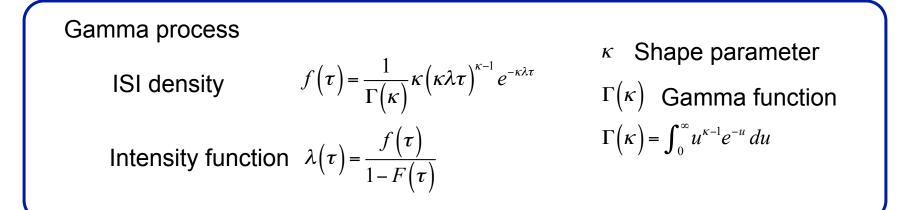
Integrating the both sides of the equality from 0 to τ yields

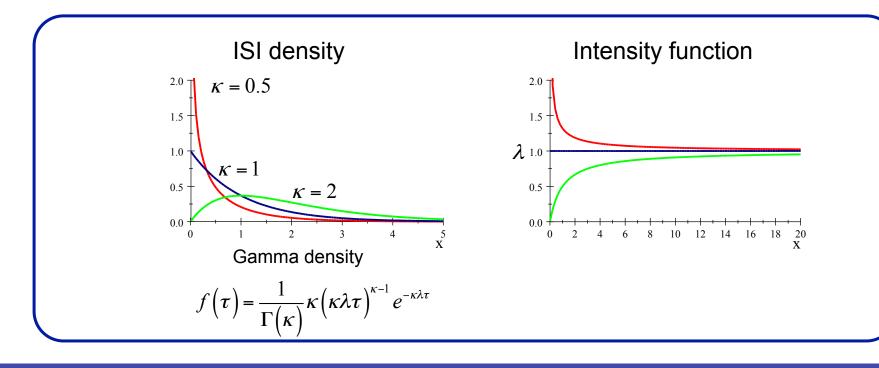
 $\overline{F}(\tau) = \exp\left[-\int_0^\tau \lambda(u) du\right] \qquad \log \overline{F}(\tau) - \log \overline{F}(0) = -\int_0^\tau \lambda(u) du$ $F(\tau) = 1 - \exp\left[-\int_0^\tau \lambda(u) du\right]$

Derivative of the CDF yields the above expression.

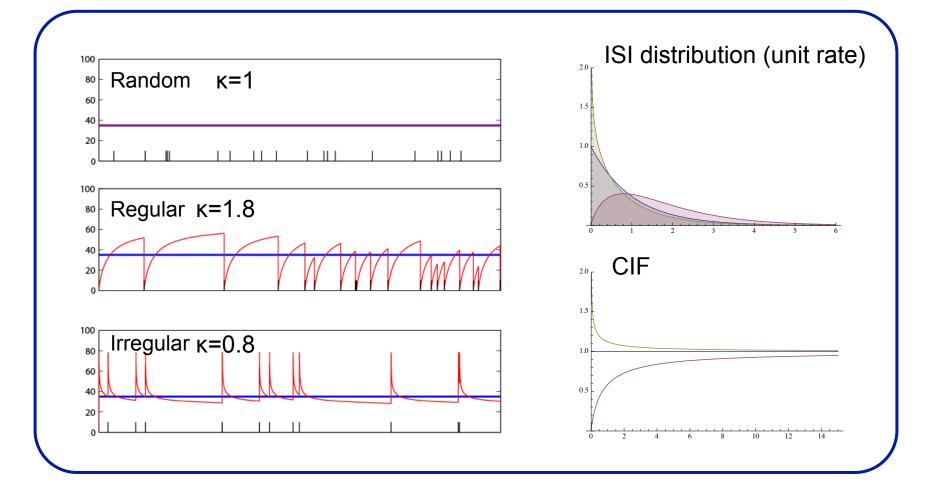
Alternative solution: generalize the derivation done in Homework 1-3.

Example: Gamma process

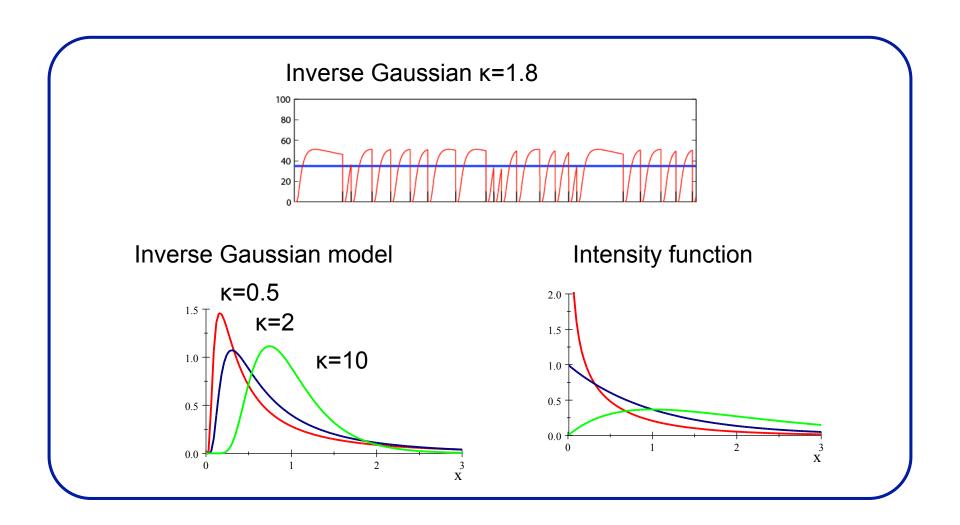




Gamma process



Inverse Gaussian model



Which renewal model for neuronal spikes?



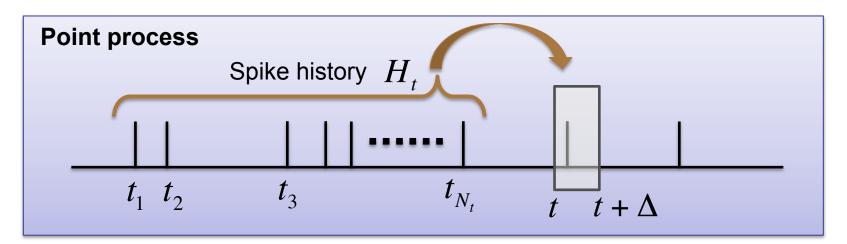
ISI distribution of spike trains from gold fish retinal ganglion cells. Lines are maximum likelihood fits of Poisson, gamma, and inverse Gaussian models density.

Brown et al. (2004) Computational Neuroscience : A Comprehensive Approach. CRC Press.

The point processes written by the conditional intensity function

POINT PROCESSES

Conditional intensity function



Definition of a point process

Causal point processes are completely characterized by the conditional intensity function.

 $P(\text{a spike in } [t, t + \Delta) | H_t) = \lambda(t | H_t) \Delta + o(\Delta)$

$$P(>1 \text{ spikes in } [t, t + \Delta) | H_t) = o(\Delta)$$

 $P(\text{no spikes in } [t, t + \Delta) | H_t) = 1 - \lambda(t | H_t) \Delta + o(\Delta)$

Spike history: $H_t = \{t_1, t_2, \dots, t_{N_t}\}$, where N_t is the number of spikes in (0,t].

CIF of point processes

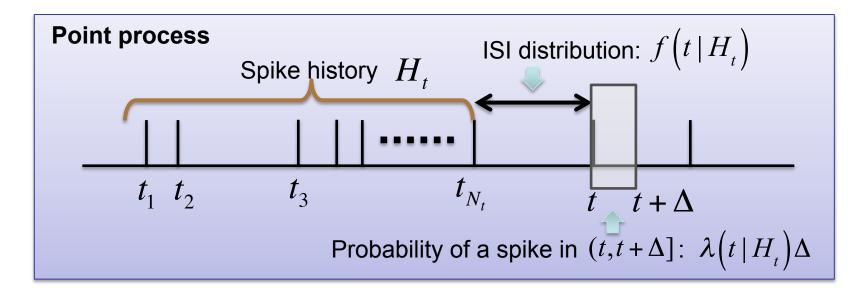
$$P(\text{a spike in } [t, t + \Delta) | H_t) = \lambda(t | H_t) \Delta + o(\Delta)$$

Spikes are independent each other = Poisson process $\lambda(t | H_t) = \lambda$ Homogeneous Poisson process $\lambda(t | H_t) = \lambda(t)$ Inhomogeneous Poisson process

Spikes are not independent each other = Non-Poisson process

$$\lambda(t \mid H_t) = \lambda(t \mid t_{N_t}) = \lambda(t - t_{N_t})$$
 Renewal process
time of the last spike before t.

CIF and conditional ISI distribution



Conditional intensity and ISI distribution

$$\lambda(t \mid H_{t}) = \frac{f(t \mid H_{t})}{1 - \int_{t_{N_{t}}}^{t} f(u \mid H_{u}) du}$$
$$f(t \mid H_{t}) = \lambda(t \mid H_{t}) \exp\left\{-\int_{t_{N_{t}}}^{t} \lambda(u \mid H_{u}) du\right\}$$

ISI distribution: $f(t | H_t) = t > t_{N_t}$ The density of the next spike at time t, given given the spike history.

Likelihood function of a point process

Likelihood function

$$p(t_1, t_2, \dots, t_n \cap N_T = n) = \prod_{i=1}^n \lambda(t_i \mid H_{t_i}) \exp\left[-\int_0^T \lambda(u \mid H_u) du\right]$$

Proof

$$p(t_1, t_2, \dots, t_n \cap N_T = n) \Delta^n = f(t_1) \Delta \prod_{i=2}^n f(t_i \mid H_{t_i}) \Delta \cdot P(t_n > T \mid H_{t_n})$$
$$= \prod_{i=1}^n \lambda(t_i \mid H_{t_i}) \Delta \exp\left[-\int_0^T \lambda(u \mid H_u) du\right]$$
Here the ISI distribution is $f(t_i \mid H_{t_i}) = \lambda(t_i \mid H_{t_i}) \exp\left[-\int_{t_{i-1}}^{t_i} \lambda(u \mid H_u) du\right]$

In application to simulating a point process

TIME-RESCALING THEOREM

Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG

Time-rescaling theorem

By the time-rescaling, any (causal) point process can be transformed into a Poisson point process with an unit rate.

Time-rescaling theorem

Let $0 < t_1 < t_2 < \cdots < t_n < T$ be a realization from a point process with a conditional intensity function $\lambda(t | H_t)$ for $t \in (0,T]$. Then define the transformation $\Lambda(t_i) = \int_0^{t_i} \lambda(u | H_u) du$ for $i = 1, \cdots, n$. Then the $\Lambda(t_i)$ $(i = 1, \cdots, n)$ are a Poisson process with unit rate.

Brown et al. (2001), Daley and Vere-Jones (1988).

Time rescaling theorem is used to

- 1. Simulate a (causal) point process.
- 2. Assess goodness-of-fit of the point process model to the data.

Example

Inhomogeneous Poisson process

Time-varying instantaneous rate $\lambda(t)$

Time-rescaling
$$\Lambda(t) = \int_0^t \lambda(u) du$$

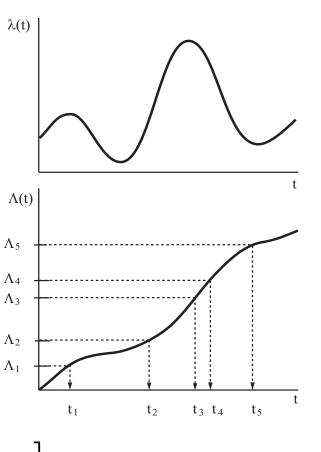
ISI in a rescaled time axis follows an unit exponential distribution.

$$\tau_{i} = \Lambda(t_{i}) - \Lambda(t_{i-1}) = \int_{t_{i-1}}^{t_{i}} \lambda(u) du$$

$$\tau_{i} \sim g(\tau) \quad \text{where} \quad g(\tau) = e^{-\tau}$$

ISI density in the original time scale

$$f(t_i | t_{i-1}) = \left| \frac{d\tau_i}{dt_i} \right| g(\tau_i) = \lambda(t_i) \exp\left[-\int_{t_{i-1}}^{t_i} \lambda(u) du \right]$$



Proof of time-rescaling theorem

Let the rescaled ISI be $\tau_i = \Lambda(t_i) - \Lambda(t_{i-1})$, where $\Lambda_i = \int_0^{t_i} \lambda(u | H_u) du$. We also define $\tau_T = \int_{t_n}^T \lambda(u | H_u) du$.

We prove that the rescaled ISIs are iid exponential random variables:

$$p(\tau_1, \tau_2, \dots, \tau_n \cap \tau_{n+1} > \tau_T) = \left(\prod_{i=1}^n \exp[-\tau_i]\right) \exp(-\tau_T)$$

By change of variables, we obtain the relation:

$$p(\tau_{1},\tau_{2},...,\tau_{n}\cap\tau_{n+1} > \tau_{T}) = p(\Lambda_{1},\Lambda_{2},...,\Lambda_{n}\cap N_{T} = n)$$

$$= \prod_{i=1}^{n} \left| \frac{dt_{i}}{d\Lambda_{i}} \right| p(t_{1},t_{2},...,t_{n}\cap N_{T} = n)$$

$$= \exp\left[-\int_{0}^{T} \lambda(u \mid H_{u}) du \right]$$

$$= e^{-\tau_{1}}e^{-\tau_{2}}\cdots e^{-\tau_{n}} \cdot e^{-\tau_{T}}$$
Here we used the density of the spike-timing in original axis as
$$p(t_{1},t_{2},...,t_{n}\cap N_{T} = n) = \prod_{i=1}^{n} \lambda(t_{i}\mid H_{t_{i}})\exp\left[-\int_{0}^{T} \lambda(u \mid H_{u}) du \right]$$

i=1

Methods for simulating a point process

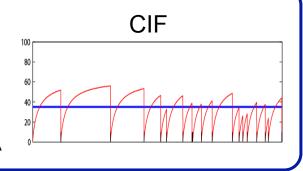
1. Method based on the instantaneous rate

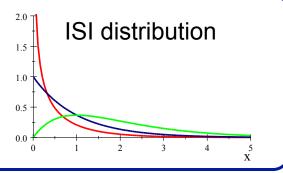
At every steps, compute the conditional rate $\lambda(t)$

Approximate the spike occurrence by a Bernoulli process. a spike $\lambda(t)\Delta$ no spike $1 - \lambda(t)\Delta$

2. Method based on ISI distribution

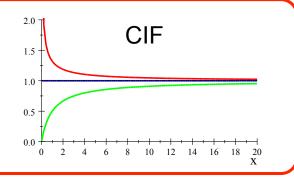
Generate ISIs using the inverse function method.





3. Method based on the time-rescaling theorem

Generate an exponential random variable. Integrate the CIF from 0 to t until it reaches the r.v.



Algotihtm based on time-rescaling theorem

Constructing a point process via time-rescaling theorem

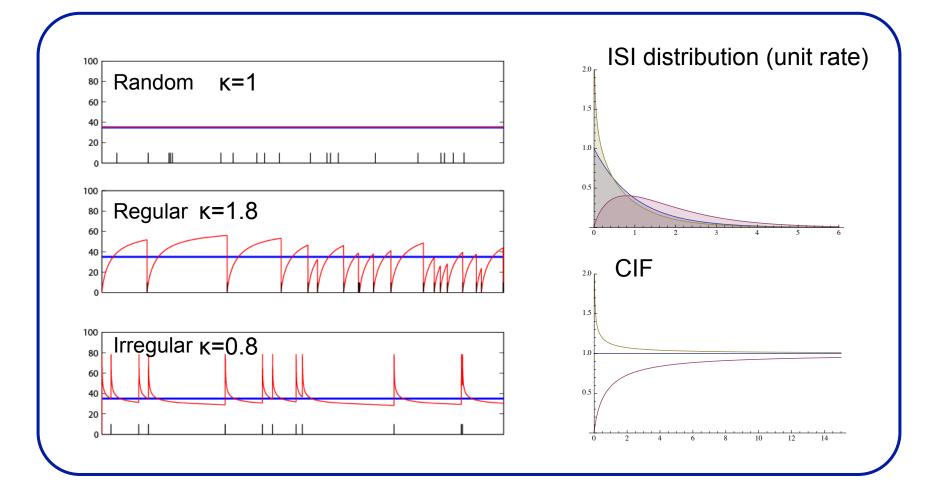
- 0. Let i = 1 and $t_0 = 0$.
- 1. Generate an exponential random variable via the inverse function method. $\zeta = -\log \xi$, where ξ is uniform random variable in [0,1].
- 2. Integrate the conditional intensity function until it satisfies

$$\zeta = \int_{t_{i-1}}^{\eta} \lambda(u \mid H_u) du$$

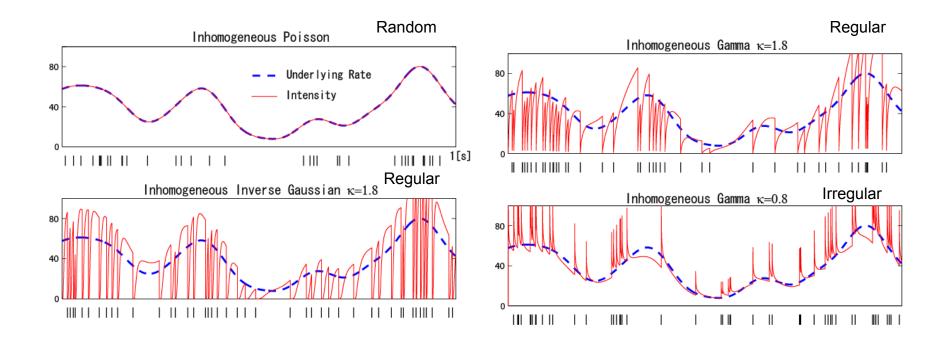
3. Let the i-th spike time as $t_i = \eta$.

Update $i \leftarrow i+1$, then repeat 1-3 until the spike time becomes larger than T.

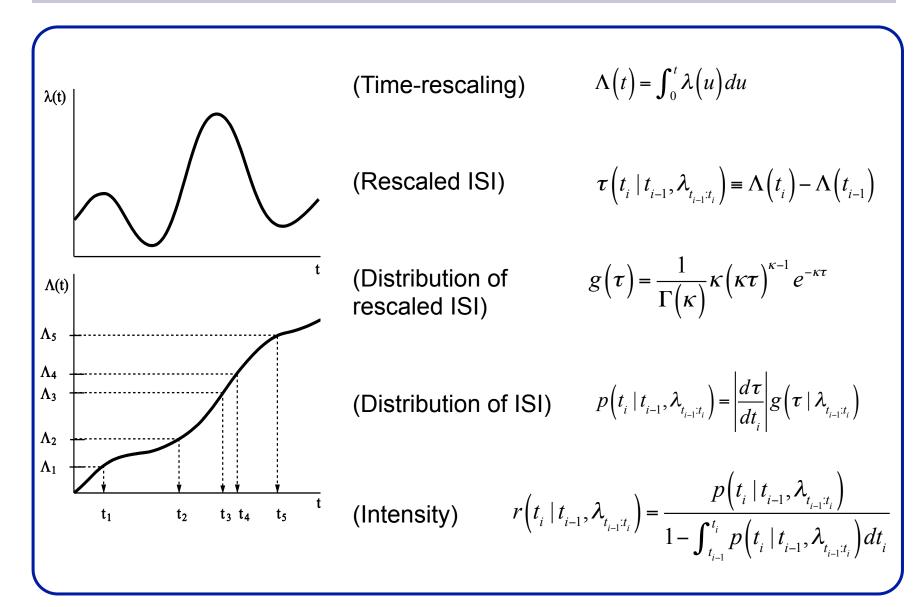
Example: Gamma process



Examples of time-dependent renewal processes



Construction of a time-dependent renewal process



In application to assessment of model goodness-of-fit

TIME-RESCALING THEOREM

Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG

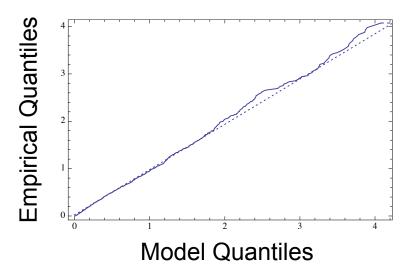
Quantile-Quantile plot

Quantile-Quantile plot

A graphical method for comparing two probability distributions by plotting their quantiles against each other.

Given the two CDFs, F(x) G(y), the Q-Q plot is a plot given by $(F^{-1}(q), G^{-1}(q))$ for $0 \le q \le 1$.

Q-Q plot can be used to compare two empirical distributions, two model (parametric) distributions, or an empirical distribution against a model distribution.



Q-Q plot of an unit exponential distribution against empirical distribution of 1000 samples from the unit exponential distribution.

Q-Q plot for assessing point process models

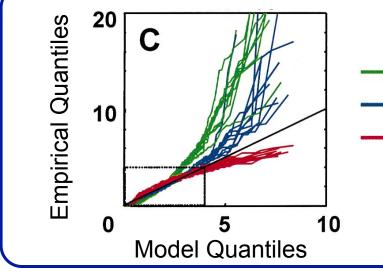
Q-Q plot for assessing a point process model.

Comparison of the rescaled ISIs and an exponential distribution.

 $F(\tau) = 1 - e^{-\tau}$ An exponential distribution function. $G(\tau)$

An empirical CDF of the rescaled ISIs.

For n ISIs, construct uniform ticks in [0,1]: $b_k = \frac{k-0.5}{1000}$ for $k = 1, \dots, n$. Plot $(F^{-1}(b_k), G^{-1}(b_k))$ for $k = 1, \dots, n$.



IP Inhomogeneous Poisson

- IG Inhomogeneous Gamma
 - IIG Inhomogeneous inverse Gaussian

Barbieri et al. J. Neurosci Methods 2001.

Kolmogorov-Smirnov (K-S) test

CDF of the rescaled ISIs

 τ_i $i = 1, 2, \dots, n$ re-scaled ISI that obeys a unit exponential distribution.

 $z_i = 1 - \exp(-\tau_i)$

 Z_i obeys a uniform distribution.

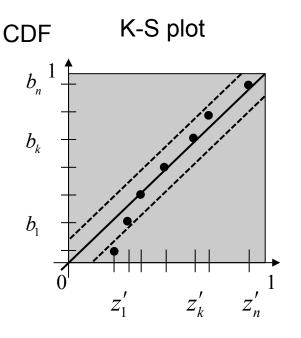
K-S plot

Re-order Z_i from smallest to largest: $z_i \rightarrow z'_k$

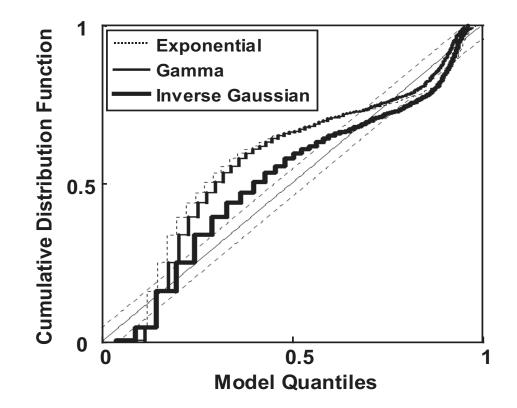
For n ISIs, construct n uniform ticks in [0,1]: $b_k = \frac{k-0.5}{n}$ for $k = 1, \dots, n$. Plot (z_k, b_k) for $k = 1, \dots, n$.

K-S test 95 confidence bound are well approximated as $b_k \pm 1.36 / n^{1/2}$. Brown et. al. Neural Comput. 2001

Barbieri et. al. J. Neurosci. Methods 2001



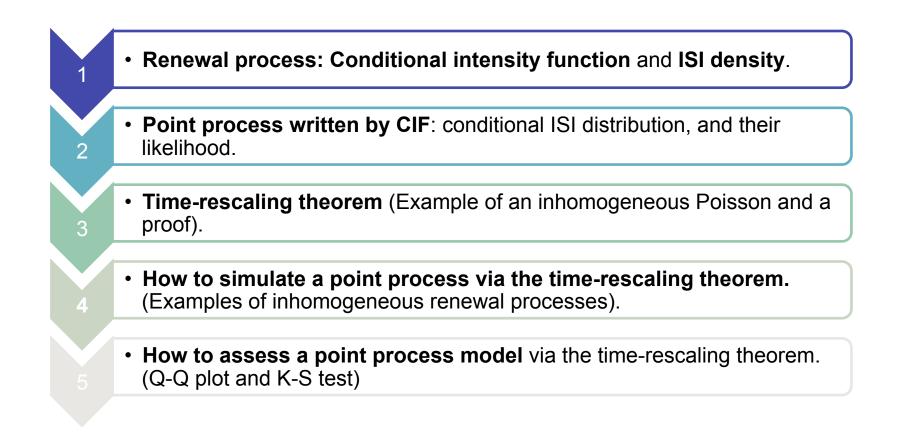
Examples of K-S plots



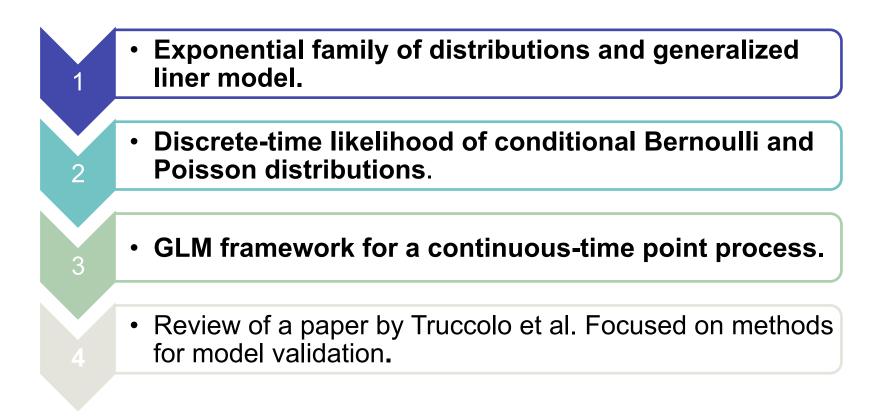
K-S plots for the fits of (homogeneous) Poisson, gamma, and inverse Gaussian models fitted to spike trains from gold fish retinal ganglion cells.

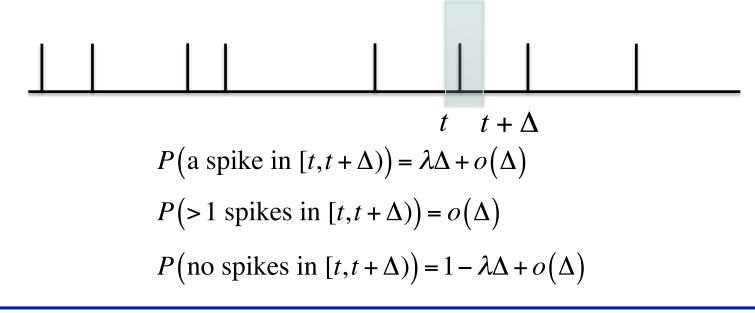
Brown et al. (2004) Computational Neuroscience : A Comprehensive Approach. CRC Press.

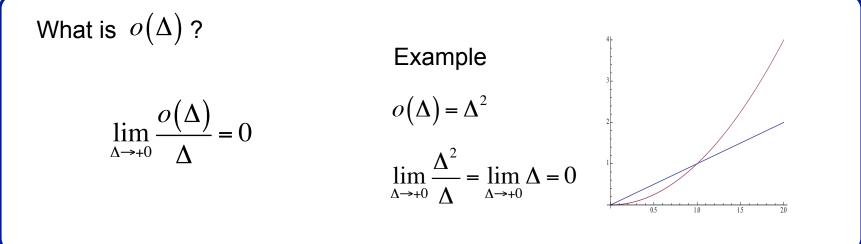
What we learned



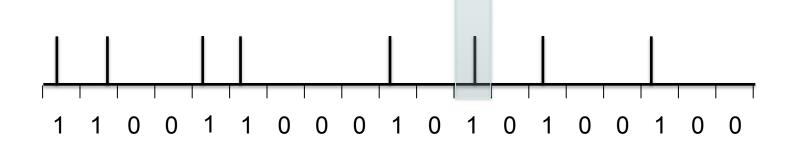
Tomorrow, we will learn







Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG



If you do not have $o(\Delta)$, namely $o(\Delta) = 0$

 $P(\text{a spike in } [t, t + \Delta)) = \lambda \Delta$ $P(>1 \text{ spikes in } [t, t + \Delta)) = 0$ $P(\text{no spikes in } [t, t + \Delta)) = 1 - \lambda \Delta$

This is a Bernoulli process.

We now recall that the number of spike count in a certain interval follows the Poisson distribution.

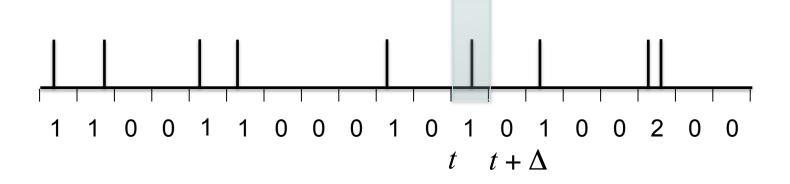
The spike count in a small bin is then approximated as

$$P(N_{\Delta} = n) = \frac{(\lambda \Delta)^{n}}{n!} e^{-\lambda \Delta} = \frac{(\lambda \Delta)^{n}}{n!} \left[1 - \lambda \Delta + \frac{1}{2} (\lambda \Delta)^{2} + \cdots \right]$$

In particular,

$$P\left(N_{\Delta}=0\right) = 1\left[1 - \lambda\Delta + \frac{1}{2}\left(\lambda\Delta\right)^{2} + \cdots\right] = 1 - \lambda\Delta + o\left(\Delta\right)$$
$$P\left(N_{\Delta}=1\right) = \lambda\Delta\left[1 - \lambda\Delta + \frac{1}{2}\left(\lambda\Delta\right)^{2} + \cdots\right] = \lambda\Delta + o\left(\Delta\right)$$
$$P\left(N_{\Delta}=2\right) = \left(\lambda\Delta\right)^{2}\left[1 - \lambda\Delta + \frac{1}{2}\left(\lambda\Delta\right)^{2} + \cdots\right] = o\left(\Delta\right)$$

The probability of having a spike/no spike is an approximation of the Poisson count distribution for a small time bin.



$$P(\text{a spike in } [t, t + \Delta)) = \lambda \Delta + o(\Delta)$$
$$P(>1 \text{ spikes in } [t, t + \Delta)) = o(\Delta)$$
$$P(\text{no spikes in } [t, t + \Delta)) = 1 - \lambda \Delta + o(\Delta)$$

This is discrete-time representation of a Poisson process.