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SPIKE-RATE ESTIMATION 
Inference for an inhomogeneous Poisson process 
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Inference problems�

Instantaneous spike-rate� λ t( )

Point process�

Stimulus signal� x t( )

Estimation�

Spike-rate estimation�

Decoding signals�
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Peri-stimulus time histogram (PSTH) 

Repeated trials 

Peri-stimulus Time Histogram 
(PSTH) 

Event (Spike) 

From Spikes: Exploring the Neural Code, Rieke et al. 1997  

Adrian, E. (1928). The basis of 
sensation: The action of the sense 
organs.  
 
George Gerstein and Nelson Kiang 
(1960 ) An Approach to the 
Quantitative Analysis of 
Electrophysiological Data from Single 
Neurons, Biophys J. 1(1): 15–28.  
 Prof. Gerstein 

Inventors of the PSTH 

Bin-width 
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Spike-rate estimation 

RecordingStimulus

Bin-width optimization Bandwidth optimization 

Choice of the bin/band width is critical in firing rate estimation. 

�Histogram Method �Kernel Method 

Bin width Bandwidth 

Shimazaki & Shinomoto  
Neural Computation, 2007 

Shimazaki & Shinomoto  
J. Comput. Neurosci, 2009 
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HISTOGRAM OPTIMIZATION�
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Unknown 

( )2ˆMISE     t tE dtλ λ= −∫
Histogram Underlying Rate 

2

2k - vC(Δ) =
Δ

Estimate Data 

Histogram optimization�
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Method for Selecting the Bin Size 

n 2
2k - vC (Δ) = ,
(nΔ)

• ��Compute the cost function 

while changing the bin size Δ. 

• ��Divide the data range into N  bins of width Δ.  
    Count the number of events ki  in the i  th bin. 

• ��Find Δ* that minimize the cost function.  

= ∑
N

i
i=1

1k k ,
N

= ∑
N

2
i

i=1

1v (k -k)
N

Mean 

Variance 

4 2 1 4 3 1 

Δ

ik

n = 4
N = 6
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Time-Varying Rate 

Spike Sequences 

Time Histogram 

The spike count in the bin obeys the Poisson 
distribution*: 

A histogram bar-height is an estimator of θ : 

The mean underlying rate in an interval [0, Δ]: 

0

1
t dtθ λ

Δ
= .
Δ ∫

( )( )
k

nn
p k n e

k
θθ

θ − ΔΔ
| Δ = .

!

n̂
k
n

θ =
Δ

�When the spikes are obtained by repeating an independent trial, the accumulated data 
obeys the Poisson point process due to a general limit theorem. 

Histogram construction�
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Expectation by the Poisson 
distribution, given the rate. 

Average over segmented bins. 

Mean integrated squared error�

MISE = 1
T

E λ̂t −λt( )
2
dt

0

T
∫ =

1
N

1
Δ

E θ̂ j
n −λt( )

2
dt

Δ j−1( )

Δj
∫

j=1

N

∑

≡
1
Δ

E θ̂ j
n −λ

j
t( )
2
dt

0

Δ

∫ =
1
Δ

E θ̂ n −λ t( )
2
dt

0

Δ

∫

MISE can be written as average of bin-by-bin MISEs. �
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Decomposition of MISE (1)�

MISE = 1
Δ

E θ̂ n −λ t( )
2
dt

0

Δ

∫

= E(θ̂n −θ )
2 +

1
Δ 0

Δ

∫
2

λt −θ( ) dt.

Systematic Error 
(Bias) 

Sampling Error 
(Variance) 

θ −θ

Bias-Variance decomposition of MISE�

Eθ̂n =θ



Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG� Spike-rate estimation �����

2
θ − θ( ) = E

2
θ̂n − Eθ̂n( ) − E(θ̂n −θ )

2

= E
2

θ̂n − θ̂n( ) + E
2

θ̂n − Eθ̂n( ) − E(θ̂n −θ )2 .

The variance of an ideal histogram 

( ) ( ) ( )2 22

0 0

1 1
t tdt dtλ θ λ θ θ θ

Δ Δ
− = − − −

Δ Δ∫ ∫
Variance of the rate Variance of  

an ideal histogram 

Decomposition of the systematic error 

θ θ−

Independent of Δ 

Independent of Δ 
Variance of a histogram Mean fluctuation Sampling error 

Decomposition of MISE (2)�
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Decomposition of MISE (3)�

MISE ≡ E(θ̂n −θ )
2 +

1
Δ 0

Δ

∫ 2
λt −θ( ) dt.

= E(θ̂n −θ )
2 +

1
Δ 0

Δ

∫
2

λt − θ( ) dt

− E
2

θ̂n − θ̂n( ) +E
2

θ̂n − Eθ̂n( ) − E(θ̂n −θ )
2%

&
'

(
)
*

= 2 E(θ̂n −θ )
2 −E

2
θ̂n − Eθ̂n( ) + 1Δ 0

Δ

∫
2

λt − θ( ) dt −E
2

θ̂n − θ̂n( )
Independent of Δ Independent of Δ 

Hence, the MISE can be decomposed into the following parts.�
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Cost function�

2 1ˆ ˆ( )n nE E
n

θ θ θ− = .
Δ

Poisson: 

Cn (Δ) ≡MISE −
1
T

2
λt − θ( ) dt0

T
∫ +E

2
θ̂n − Eθ̂n( )

= 2 E(θ̂n −θ )
2 −E

2
θ̂n − θ̂n( )

=
2
nΔ

E θ̂n −E
2

θ̂n − θ̂n( ) .

We define a cost function by subtracting the terms independent from Δ.�

Ĉn (Δ) =
2
nΔ

θ̂n −
2

θ̂n − θ̂n( )
=
2
nΔ

k
nΔ

−
1
nΔ( )2

ki − k( )
2
=
2k − v
nΔ( )2

Finally, estimation of the cost function is given as �

n̂
k
n

θ =
Δ

The Δ that minimizes the cost function is an optimal bin size that 
minimizes the MISE.�
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Background and significance 

*

2

range of data
1 log n

Δ =
+

The duration for eruptions of the Old Faithful 
geyser in Yellowstone National Park (in minutes)  

Bin width Sturges (1926) 

Scott (1979) * 1/33.49 nσ −Δ =

Rudemo (1982) Cross-validation 

Freedman and Diaconis (1981) 
* 1/32IQR n−Δ = ⋅

( )
( ) ( )2

1

2 1ˆ
1 1

N

i
i

nQ k
n n n =

+
Δ = −

− Δ − ∑

Wand (1997) Plug-in method 
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Further topics on the optimal bin size 

The divergence of an optimal bin size. 
(The minimum number of trial to construct a histogram.) 
 
Solution: 
A method to estimate the number of trials required to construct 
a histogram.  

Asymptotic theory of an optimal bin size. 

When the data size is large.�

When the data size is small.�
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Cn Δ( ) =
θ

nΔ
−

2
θ − θ( ) =

µ
nΔ

−
1
Δ2 0

Δ

∫ 0

Δ

∫ φ t1 − t2
$

%
&

'

(
)dt1dt2.

Unknown 

Data 

µ ( )1 2t tφ −
Mean Correlation function n 2

2k - vC (Δ) =
(nΔ)

Theory 

Empirical 

Theoretical cost function 

Theoretical cost function for a stationary underlying process�
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( ) ( )1 2 1 22 0 0

1
nC t t dt dt

n
µ

φ
Δ Δ

Δ = − − .
Δ Δ ∫ ∫

( ) ( ) ( ) 2 31 1( ) 0 0 0 ( )
3 12nC O

n
µ

φ φ φ+" ""Δ = − − Δ− Δ + Δ .
Δ

Expansion of the cost function by Δ: 

( )

1 3
6~
0 n
µ

φ

/

∗
# $

Δ − .' (' ())* +

Scaling of the optimal bin size: 

Theoretical cost function: 

Scaling of the optimal bin size�

Number of sequence s, m
100 101 102 103

10-2

10-1

m

Scaling of the optimal bin size 

-1/3 

When the number of sequences is large, the optimal bin size 
becomes very small 

Ref. Scott (1979) * 1/3ˆ3.49 nσ −Δ = Number of sequences, n�
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( ) ( ) ( )2

2

1 1~ | |

1 1 1 1

n

c

C t dt t t dt
n

u
n n

µ
φ φ

µ

∞ ∞

−∞ −∞
Δ − +

Δ Δ Δ

% &
= − +' (

Δ Δ) *

∫ ∫

( )cn t dtµ φ
∞

−∞
= ∫

The expansion of the cost function by 1/Δ:  

Critical number of trials:  

cn n<

cn n>
Optimal bin size diverges. 

Finite optimal bin size. 

The second order phase transition. 

Not all the process undergoes the first order phase transition.  
Others undergo the second order (discontinuous) phase transition. 

When the number of sequences is small, the optimal bin size may 
become very large. 

cf. Koyama and Shinomoto J. Phys. A, 37(29):7255–7265. 2004 

Minimum number of trials for a histogram�
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n: small 

n: large Δ

Phase transitions of an optimal bin-width 

cn

1 Δ5n =

1 n

10n =
15n =

20n =

25n =

n: small 

n: large 1 Δ

Cn Δ( )
Cn Δ( )



Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG� Spike-rate estimation �����

Estimating the minimum number of trials�

Extrapolated:  
 
 
Finite optimal bin size 

Original:  
Optimal bin size diverges 

( ) 2

1 1 ( )m n
kC n C

m n n
! "Δ | = − + Δ% & Δ' (

( )nC Δ

Required # of 
sequences  
(Estimation) 

Optimal bin size v.s. m 

Data size used # of sequences used 

Required # of trials 

( )
cn

t dt

µ

φ
∞

−∞

=

∫

30

We have n=30 sequneces. 
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Data : Britten et al. (2004) neural signal archive 

Application to MT neuron data 

Too few to make  
a Histogram ! 

( ) 2

1 1 ( )m n
kC n C

m n n
! "Δ | = − + Δ% & Δ' (

Extrapolation 

Estimation:  
At least 12 trials are 

required. 

Optimized histogram 
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LINE-GRAPH HISTOGRAM�
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Line-graph time histogram 

0

1
t dtλ

Δ+Λ ≡ .
Δ ∫

+

^+

^

0

0

t

( )( )
k

nn
p k n e

k
θθ − ΔΔ

| ΔΛ = .
!

01 .t dtθ λ−

−Δ
≡
Δ ∫2tL tθ θ θ θ+ − + −+ −

= + .
Δ

ˆ ˆ ˆ ˆˆ
2t tL θ θ θ θ

+ − + −+ −
= + .

Δ

A line-graph is constructed by connecting top-
centers of adjacent bar-graphs.  

An estimator of a line-graph 

The spike count obeys the Poisson distribution 

Rate 

Spike Sequences 

Time Histogram 

Line-Graph Model 
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( )
( ) ( ) ( 0) ( )

2

2 2 1( ) 2 2
3 ( ) 3 3n
kC
n

σ σ σ σ
+

+,+ +,− +, +,∗Δ = + + − − .
Δ

( ) ( )ik j−( ) ( )ik j+ (0) ( )ik j ( ) ( )ik j∗

( ) ( )

1
( )

n
p p
i i

j
k k j

=

≡∑

(i) Define the four spike counts,  
{ 0 }p = −, +, ,∗

( ) ( )

1

1 N
p p

i
i
kk N =

≡ ∑( )( )( ) ( )( ) ( ) ( )

1

1 N
p qp q p q

i i
i

s k kk kN
,

=

≡ − −∑

( ) ( )
( ) ( )( )

1 1

1 1 ( ) ( )
p qN n

p qp q i i
i i

i j

k kk j k js N n n n
,

= =

! "! "
≡ − −% &% &

' (' (
∑ ∑

( ) ( )
( )

2 2( )

p q p q
p q s s

n n
σ

, ,
, ≡ −

Δ Δ

(ii) Summation of the spike count 

Binned-average 

Covariations w.r.t. bins 

Bin-average of the covariation of spike 
count w.r.t. sequences,   

(iv) Cost function: 

(iii)  

(v) Repatn i through iv by changing Δ. Find the optimal Δ that minimizes the cost function.  

0 1 1 2 0 1 

0 2 2 0 0 1 

( ) ( )ik j−

( ) ( )ik j+

(0) ( )ik j

( ) ( ) 2 ( )i ik j t j∗ ≡ /Δ∑ l
l

i

j

j

j

The covariances of an ideal line-graph 
model is 

An algorithm for optimizing line-graph histogram 
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The optimal line-graph histogram 

0.05 0.1 0.15 0.2 0.25 0.3

-100
-75
-50

-25

25

50
75
100

Line-Graph 

Bar-Graph 

A line-graph histogram 
generally performs better than a 
bar-graph histogram. 

Cost function 
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( ) ( )

( )

2

1 2 1 22 0 0

1

nC n

t t dt dt
n

θ
θ θ

µ
φ

Δ Δ

Δ = − −
Δ

= − − .
Δ Δ ∫ ∫

( ) ( )
2

2
1 2 1 22 0 2

22 2 1
3n

tC t t dt dt
n
µ

φ
Δ Δ/

−Δ/

$ %Δ = − + −& 'Δ Δ Δ( )∫ ∫

( ) ( )
0

1 2 1 2 1 2 1 22 20 0 0

2 1
3 3

t t dt dt t t dt dtφ φ
Δ Δ Δ

−Δ
+ − + − .

Δ Δ∫ ∫ ∫ ∫

(Bar-Graph) 

(Line-Graph) 

Theoretical cost functions 
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( ) ( ) ( ) 2 31 1( ) 0 0 0 ( )
3 12nC O

n
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φ φ φ+" ""Δ = − − Δ− Δ + Δ .
Δ

( )

1 3
6~
0 n
µ

φ

/

∗
# $

Δ − .' (' ())* +

1 2
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3 144 5760 2880nC O
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µ
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Δ
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1 5
1280~
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µ

φ
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# $
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1 2
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20

40

60

80

100

the second order term vanishes. 

The expansion of the cost function by Δ: 

A smooth process: A correlation function is smooth at origin. 

A jagged process: A correlation function has a cusp at origin. 

(0 ) 0φ +" = (Bar-Graph) 

(Line-Graph) 

(Bar-Graph) 

(Line-Graph) 

(Bar-Graph) 

(Line-Graph) 

(0 ) 0φ +" ≠

Scalings of the optimal bin size�
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Identification of the scaling exponents 

1 2~ n∗ − /Δ1/2~ n∗ −Δ

smooth 

zig-zag 

1 5~ n∗ − /Δ

smooth 

zig-zag 

1 3~ n∗ − /Δsmooth 

zig-zag 

Bar-graph Histogram Line-graph Histogram 

Data size used. Data size used. 
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KERNEL DENSITY OPTIMIZATION 



Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG� Spike-rate estimation �����

Rate estimation by kernel convolution�

λ t( ) = kw t − ti( )
i=1

n

∑ = kw t − s( ) x s( )ds
0

T
∫ x t( ) = δ t − ti( )

i=1

n

∑

Kernel function with bandwidth w.�

kw s( ) = 1
2πw

e
−

s
2w2

Example: A Gaussian function.�
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( )
,

( ) ( ) 2 ( , )w i w j w i j
i j i j

C w k s t k s t ds k t t
≠

= − − −∑ ∑∫

Shimazaki & Shinomoto, J. Comp. Neurosci 2010 

Kernel bandwidth optimization�
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Locally adaptive kernel density estimation�

A fixed kernel method�
Locally adaptive method�

Fixed bandwidth�

Adaptive bandwidth�
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Optimization of locally adaptive kernel method 

Shimazaki & Shinomoto, J. Comp. Neurosci 2010 

Automatically adjusts the stiffness of bandwidth variability. 
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OTHER ADAPTIVE 
ESTIMATION METHODS�
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Bayesian Binning�

Endres, D., Oram, M., Schindelin, J., & F, P. Foldiak. Bayesian binning beats 
approximate alternatives : estimating peristimulus time histograms. NIPS 2008 
Endres, D and Oram, M, Feature extraction from spike trains with Bayesian binning: 
'Latency is where the signal starts’ J Comput Neurosci 2009. 

can be evaluated with O(T2) effort

then:

Assume we knew

Model instantaneous firing 
rates from neural spike trains  
as a function of time.

Data: extracellular single-cell recordings 
from high-level visual area STSa. 
Problem 1: small number of repetitons (≈5-50).

● Standard approaches:
● bar PSTH (peri-stimulus time histogram):

● choose some 'suitable' bin size, count spikes in bin
● Problem 2: fixed bin size might be inappropriate, 
e.g. overfitted noise.

● Problem 3: fixed bin boundaries impose structure 
that might not be in the spike trains, e.g. 
underfitted latency.

● SDF (spike density function):
● choose some 'suitable' kernel width, smooth spike 
trains with e.g. Gaussian kernel.

● Same problems as with PSTH.

Bayesian binning beats approximate alternatives: 
estimating peri-stimulus time histograms

D. Endres, M. Oram, J. Schindelin and P. Földiák
Objective:

Keep bins, but allow for:
● different bin durations
● different bin heights
● range of numbers of bins M

That fixes Problems 2 & 3. We deal with Problem 1 
by a Bayesian approach (proper treatment of 
posterior uncertainties).

⇒ Generative model of spike trains: 
Inhomogeneous Bernoulli process with 
binwise constant probabilities.

 ⇒ Evidence evaluation is O(MT2), not O(TM) !
Posterior expectations can be evaluated in the same way!

Our solution: Our solution:
Performance 
comparison:

Latency (=cell starts firing) here.
Stand back & squint a little!

overfitted noise?

Poster ID W13

P
(s

pi
ke

|t)
=

(t)


t

0 k
0

k
1

k
2

k
3
=T-1

t
t

t
min

t
max

k

= [ 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 ]zi

f
1

f
2

P  zi∣{ f m }, {k m} , M ,T =∏
m=0

M

f m
s zi , m 

1− f m
g zi , m 

s zi ,m , g  zi , m : number of spikes, gaps in      in bin mzi

p { f m }, {k m }∣M ,T = p{ f m }∣M  P {k m }∣M ,T Non-informative prior:

p { f m }∣M =∏
m=0

M

B  f m ;m , m

P {km }∣M , T =
1

T −1
M 

Likelihood:

Priors:

with B f , ,= 

   
f −11− f −1

D. Endres is supported by an MRC special training fellowship in 
neuroinformatics G0501319.

Evidence (marginal likelihood):

P {zi }∣M ,T =∑
k 0

∑
k M

∫
f 0

df 0∫
f M

df M P {zi }∣{ f m } ,{k m }, M , T  p { f m } ,{k m }∣M ,T 

conjugate to likelihood!

●Integrals: easy to compute, due to conjugacy. After 
integration, one factor                         per bin:

P {zi }∣M ,T =∑
k 0

∑
k M

Qmk m−1 , km 

Qm k m−1 , k m

T−1
M ●Sums tricky:          summands ⇒ exponential complexity? 

●BUT: sums can be 'pushed' to the right! (dynamic programming)

P {zi }∣M ,T ∝∑
k M

∑
k3

Q4 k 3, k 4∑
k2

Q3k 2, k3∑
k1

Q2k1, k2∑
k0

Q1k 0, k1Q 0k
−1 , k0

∀ k 2 : R2[ k2]:=∑
k1

Q 2k1, k 2∑
k0

Q1k0, k1Q0 k−1 , k 0

∀ k 3: R3[ k3]:=∑
k2

Q3k2, k3R2 [k 2]

P M =
1

M max

Predictive firing rate:

Bin number 
(M) posterior:

Latency is precisely captured! noise is not overfitted!

Hyperpriors over 
m 

, 
m 

: broad , peak at a firing rate of ≈ 60Hz

● Spike trains recorded from 20 cells in area STSa
● Complex visual stimuli presented at various 

contrasts
● 336 datasets, at least 20 spike trains per set
● 5 fold cross-validation per set
● Compared to:

● Smoothing with Gaussian kernel
● local likelihood adaptive fit [3]
● recent methods by Shimazaki & Shinomoto

● bar PSTH [1]
● line PSTH [1]
● SDF with optimized kernel width [2]

RESULT: All error distributions are skewed to the 
right ⇒ Bayesian binning is not just better on average, 
but in the vast majority of cases!

References
[1] Shimazaki, H. and Shinomoto, S., A Method for Selecting the Bin Size of a Time Histogram, 
Neural Computation, 19(6):1503-1527,2007.
[2] Shimazaki, H. and Shinomoto, S., Kernel Width Optimization in the Spike-rate Estimation. In 
the proceeding of Neural Coding 2007. URL: http://neuralcoding2007.edu.uy.
[3] Loader, C., LOCFIT: an introduction. 
URL: http://cm.bell-labs.com/cm/ms/departments/sia/doc/locfitscg.ps.

can be evaluated with O(T2) effort

then:

Assume we knew

Model instantaneous firing 
rates from neural spike trains  
as a function of time.

Data: extracellular single-cell recordings 
from high-level visual area STSa. 
Problem 1: small number of repetitons (≈5-50).

● Standard approaches:
● bar PSTH (peri-stimulus time histogram):

● choose some 'suitable' bin size, count spikes in bin
● Problem 2: fixed bin size might be inappropriate, 
e.g. overfitted noise.

● Problem 3: fixed bin boundaries impose structure 
that might not be in the spike trains, e.g. 
underfitted latency.

● SDF (spike density function):
● choose some 'suitable' kernel width, smooth spike 
trains with e.g. Gaussian kernel.

● Same problems as with PSTH.

Bayesian binning beats approximate alternatives: 
estimating peri-stimulus time histograms

D. Endres, M. Oram, J. Schindelin and P. Földiák
Objective:

Keep bins, but allow for:
● different bin durations
● different bin heights
● range of numbers of bins M

That fixes Problems 2 & 3. We deal with Problem 1 
by a Bayesian approach (proper treatment of 
posterior uncertainties).

⇒ Generative model of spike trains: 
Inhomogeneous Bernoulli process with 
binwise constant probabilities.

 ⇒ Evidence evaluation is O(MT2), not O(TM) !
Posterior expectations can be evaluated in the same way!

Our solution: Our solution:
Performance 
comparison:

Latency (=cell starts firing) here.
Stand back & squint a little!

overfitted noise?
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s zi ,m , g  zi , m : number of spikes, gaps in      in bin mzi

p { f m }, {k m }∣M ,T = p{ f m }∣M  P {k m }∣M ,T Non-informative prior:
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m=0
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Likelihood:

Priors:
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Evidence (marginal likelihood):

P {zi }∣M ,T =∑
k 0

∑
k M

∫
f 0

df 0∫
f M

df M P {zi }∣{ f m } ,{k m }, M , T  p { f m } ,{k m }∣M ,T 

conjugate to likelihood!

●Integrals: easy to compute, due to conjugacy. After 
integration, one factor                         per bin:

P {zi }∣M ,T =∑
k 0

∑
k M

Qmk m−1 , km 

Qm k m−1 , k m

T−1
M ●Sums tricky:          summands ⇒ exponential complexity? 

●BUT: sums can be 'pushed' to the right! (dynamic programming)

P {zi }∣M ,T ∝∑
k M

∑
k3

Q4 k 3, k 4∑
k2

Q3k 2, k3∑
k1

Q2k1, k2∑
k0

Q1k 0, k1Q 0k
−1 , k0

∀ k 2 : R2[ k2]:=∑
k1

Q 2k1, k 2∑
k0

Q1k0, k1Q0 k−1 , k 0

∀ k 3: R3[ k3]:=∑
k2

Q3k2, k3R2 [k 2]

P M =
1

M max

Predictive firing rate:

Bin number 
(M) posterior:

Latency is precisely captured! noise is not overfitted!

Hyperpriors over 
m 

, 
m 

: broad , peak at a firing rate of ≈ 60Hz

● Spike trains recorded from 20 cells in area STSa
● Complex visual stimuli presented at various 

contrasts
● 336 datasets, at least 20 spike trains per set
● 5 fold cross-validation per set
● Compared to:

● Smoothing with Gaussian kernel
● local likelihood adaptive fit [3]
● recent methods by Shimazaki & Shinomoto

● bar PSTH [1]
● line PSTH [1]
● SDF with optimized kernel width [2]

RESULT: All error distributions are skewed to the 
right ⇒ Bayesian binning is not just better on average, 
but in the vast majority of cases!

References
[1] Shimazaki, H. and Shinomoto, S., A Method for Selecting the Bin Size of a Time Histogram, 
Neural Computation, 19(6):1503-1527,2007.
[2] Shimazaki, H. and Shinomoto, S., Kernel Width Optimization in the Spike-rate Estimation. In 
the proceeding of Neural Coding 2007. URL: http://neuralcoding2007.edu.uy.
[3] Loader, C., LOCFIT: an introduction. 
URL: http://cm.bell-labs.com/cm/ms/departments/sia/doc/locfitscg.ps.



Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG� Spike-rate estimation �
���

Bayesian adaptive regression splines�

Kass RE, Ventura V, Cai C, Statistical smoothing of neuronal 
data. Network-Computation in Neural Systems 2003 
DiMatteo I, Genovese C R, Kass RE, Bayesian curve-fitting 
with free-knot splines. Biometrika 2001. 
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Figure 1. (A) Raster plot and PSTH for a neuron, and (B) the smooth PSTH obtained with BARS
(DiMatteo et al 2001).

be written as λ̂(t). We therefore label the fitted firing-rate curve as λ̂(t) in figure 1(B). This
emphasizes the distinction between an unknown ‘true’ curve and an estimate of it.

Why do we care about the instantaneous firing rate? Sometimes, questions of interest
require it. For example, a study in the laboratory of Carl Olson, our colleague at the Center
for the Neural Basis of Cognition in Pittsburgh (Olson et al 2000), examined neurons in the
supplementary eye field (SEF) when a monkey moved its eyes in response to either an explicit
external cue (the point to which the eyes were to move was illuminated) or an internally
generated translation of a complex cue (a particular pattern at the fixation point determined the
location to which the monkey was to move his eyes). We were interested in the time at which
maximal firing rate was achieved, and the delay of this maximum for the internally generated
cue compared to the external cue. The raster and PSTH are given in figure 2(A).

It would be possible to use the PSTH to estimate the time at which the maximal firing
rate is achieved: find the highest peak and then the time at which it occurs. However, as can
be seen in figure 2(B), that estimate would be noisy. A more accurate method is to first fit
a smooth curve, then repeat the process for the fitted curve. This produces a different value,
which better represents the time of the peak firing rate under the rather natural assumption that
the firing rate is varying smoothly.
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Performance comparison 

Shimazaki & Shinomoto, J. Comp. Neurosci 2010 

A simple kernel method is comparable to, or even better than modern methods.  

Good 

Bad 

Histogram 

Kernel 

Variable Kernel 



Hideaki Shimazaki, Ph.D. http://goo.gl/viSNG� Spike-rate estimation �����

Conclusion 

Single Neurons Spike-rate Estimation 
 
 

Fixed Kernel Method 
(Simple and Accurate enough = Practical) 
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What we learned�

1 
•  A simple formula for a histogram optimization. 

2 
•  Scaling and phase-transition property of an optimal 

bin size. 

3 
•  Kernel density optimization method. 

4 
•  Adaptive methods are still under active research area.  
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Tomorrow we will learn�

1 
•  Framework of a state-space model. 

2 
•  Recursive Bayesian filter. Laplace’s method, and Newton-raphson 

method.  

3 
•  Simultaneous estimation of posterior and parameters (EM-algorithm). 

4 
•  Model validation (Bayes factor, ABIC),  

5 
•  Applications to neural decoding and plasticity.  


