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Abstract

We show that dynamical gain modulation of neurons’ stimulusresponse is de-
scribed as an information-theoretic cycle that generates entropy associated with
the stimulus-related activity from entropy produced by themodulation. To articu-
late this theory, we describe stimulus-evoked activity of aneural population based
on the maximum entropy principle with constraints on two types of overlapping
activities, one that is controlled by stimulus conditions and the other, termed in-
ternal activity, that is regulated internally in an organism. We demonstrate that
modulation of the internal activity realises gain control of stimulus response, and
controls stimulus information. A cycle of neural dynamics is then introduced to
model information processing by the neurons during which the stimulus informa-
tion is dynamically enhanced by the internal gain-modulation mechanism. Based
on the conservation law for entropy production, we demonstrate that the cycle
generates entropy ascribed to the stimulus-related activity using entropy supplied
by the internal mechanism, analogously to a heat engine thatproduces work from
heat. We provide an efficient cycle that achieves the highestentropic efficiency to
retain the stimulus information. The theory allows us to quantify efficiency of the
internal computation and its theoretical limit.

1 Introduction

Humans and animals change sensitivity to sensory stimulus either adaptively to the stimulus con-
ditions or following a behavioural context even if the stimulus does not change. A potential neu-
rophysiological basis underlying these observations is gain modulation that changes responsiveness
of neurons to stimulus; an example is contrast gain-controlfound in retina [30] and primary visual
cortex under anaesthesia [15, 25], or in higher visual area caused by attention [18, 28]. Theoretical
considerations suggested the gain modulation as a nonlinear operation that integrates information
from different origins, offering ubiquitous computation performed in neural systems (see [5,32] for
reviews). Regulation of the level of background synaptic inputs [4,7], shunting inhibition [8,20,26],
and synaptic depression [1, 29] among others have been suggested as potential biophysical mech-
anisms of the gain modulation (see [40] for a review). While such modulation of the informative
neural activity is a hallmark of computation performed internally in an organism, a principled view
to quantify the internal computation has not been proposed yet.

Neurons convey information about the stimulus in their activity patterns. To describe probabilities of
a combinatorially large number of activity patterns of the neurons with a smaller number of activity
features, the maximum entropy principle has been successfully used [33, 39]. This principle con-
structs the least structured probability distribution given the small set of specified constraints on the
distribution, known as a maximum entropy model. It explainsprobabilities of activity patterns as a
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result of nonlinear operation on the specified features using a softmax function. Moreover, the model
belongs to an exponential family distribution, or a Gibbs distribution. Equivalence of inference un-
der the maximum entropy principle with aspects of the statistical mechanics and thermodynamics
was explicated through the work by E. Jaynes [11]. Recently thermodynamic quantities were used
to assess criticality of neural activity [44, 45]. However,analysis of neural populations under this
framework only recently started to include ‘dynamics’ of a neural population [10,12,13,23,35–37],
and has not yet reached maturity to include computation performed internally in an organism.

Based on a neural population model obtained under the maximum entropy principle, this study
investigates neural dynamics during which gain of neural response to a stimulus is modulated with
a delay by an internal mechanism to enhance the stimulus information. This process is expected for
dynamics of neurons subject to a feedback gain-modulation mechanism, e.g., via recurrent networks
[31,41,42]. Regardless of the mechanisms, the delay is observed in the gain modulation at different
stages of visual pathways [16, 19, 28]. For example, effect of contrast gain-control by attention on
response of V4 neurons to high contrast stimulus appears 200-300 ms after the stimulus presentation,
but is absent during 100-200 ms time period during which the neural response is returning to a
spontaneous rate [28]. We demonstrate that our hypothetical dynamics of delayed gain-modulation
forms an information-theoretic cycle that generates entropy ascribed to the stimulus-related activity
using entropy supplied by the internal gain-modulation mechanism. The process works analogously
to a heat engine that produces work from heat supplied by reservoirs. We define entropic efficiency
of gain-modulation performed to retain the stimulus information, and provide a cycle that achieves
the highest entropic efficiency.

This paper is organised as follows. In Section 2 we constructa maximum entropy model of a neural
population by constraining two types of activities, one that is directly regulated by stimulus and the
other that represents background activity of neurons, termed ‘internal activity’. We point out that
modulation of the internal activity realises gain-modulation of stimulus response. In Section 3, we
explain the conservation of entropy, equation of state for the neural population, and information on
stimulus. In Section 4, we construct cycles of neural dynamics that model stimulus-evoked activity
during which the stimulus information is enhanced by the internal mechanism. We show that an ideal
cycle introduced in this section achieves the highest efficiency in retaining the stimulus information.
Derivations of free energies of the neural population are summarised in Appendix.

2 A simple model of gain modulation by a maximum entropy model

Maximum entropy model of spontaneous neural activity.We start by modelling spontaneous ac-
tivity of N spiking neurons. We represent a state of theith neuron by a binary variablexi = (0, 1)
(i = 1 · · ·N ). Here silence of the neuron is represented by ‘0’ whereas activity, or a spike, of the
neuron is denoted by ‘1’. The simultaneous activity of theN neurons is represented by a vector
of the binary variables,x = (x1, . . . , xN ). The joint probability mass function,p(x), describes
the probability of generating the patternx. There are2N different patterns. We characterise the
combinatorial neural activity with a smaller number of characteristic featuresFi(x) (i = 1, . . . , d,
whered < 2N ), based on the maximum entropy principle. HereFi(x) is theith feature that com-
bines the activity of individual neurons. For example, these features can be the first and second
order interactions,Fi(x) = xi for i = 1, . . . , N , andF(N−i/2)(i−1)+j−i(x) = xixj for i < j. The
maximum entropy principle constructs the least structuredprobability distribution while expected
values of these features are specified [11]. By representingexpectation byp(x) using a bracket〈·〉,
these constraints are written as〈Fi(x)〉 = ci (i = 1, . . . , d), whereci is the specified constant.

Maximisation of a function subject to the equality constraints is formulated by the method of La-
grange multipliers that alternatively maximises the following Lagrange function,

L[p] = −
∑

x

p(x) log p(x)− a
∑

x

p(x)−
∑

i

bi

{

∑

x

p(x)Fi(x)− ci

}

, (1)

wherea andbi (i = 1, . . . , d) are the Lagrange multipliers. The Lagrange function is a functional
of the probability mass function. By finding a zero point of its variational derivative, we obtain

p(x) ∼ exp

(

−
∑

i

biFi(x)

)

. (2)
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The Lagrange parametersbi are obtained by simultaneously solving∂L∂bi = 〈Fi(x)〉 − ci = 0
for i = 1, . . . , d. Many gradient algorithms and approximation methods have been developed to
search the parameters. Activities of retinal ganglion cells [33, 39, 44, 45], hippocampal [38], and
cortical neurons [37, 43, 46] were successfully characterised using Eq. 2. In the following, we use
a vector notationb0 = (b1, ..., bd)

T andF(x) = (F1(x), . . . , Fd(x))
T . HereH0 ≡ b

T
0 F(x) is a

Hamiltonian of the spontaneously active neurons. In statistical mechanics, Eq. 2 is identified as the
Boltzmann distribution with an unit thermodynamicbeta.

Maximum entropy model of evoked neural activity. In this subsection, we model evoked activity
of neurons caused by changes in extrinsic stimulus conditions. We define a feature of stimulus-
related activity asX(x) = b

T
1 F(x), where elements ofb1 dictate response properties of each

feature inF(x) to a stimulus. For simplicity, we represent the stimulus-related activity by this
single feature, and consider that the evoked activity is characterised by the two features,H0(x) and
X(x). To model it, we constrain expectation of the internal and stimulus features usingU andX ,
respectively. Here we assume thatF(x), b0, andb1 are known and fixed. For example, this would
model responses of visual neurons when we change contrast ofa stimulus while fixing the rest of the
stimulus properties. The maximum entropy distribution subject to these constraints is again given
by the method of Lagrange multipliers. The Lagrange function is given as

L[p] =−
∑

x

p(x) log p(x)

− a
∑

x

p(x)− β

{

∑

x

p(x)H0(x)− U

}

+ α

{

∑

x

p(x)X(x)−X

}

. (3)

Herea, β, andα are the Lagrange parameters. By maximising the functionalL with respect top,
we obtain the following maximum entropy model,

p(x) = exp[−βH0(x) + αX(x)− ψ(β, α)], (4)

whereψ(β, α)(= 1 + a) is a logarithm of a normalisation term. It is computed as

ψ(β, α) = log
∑

x

e−βH0(x)+αX(x). (5)

We callψ(β, α) a log-partition function. The Lagrange multipliers,β andα, are adjusted such that
〈H0(x)〉 = U and〈X(x)〉 = X . Eq. 4 is a softmax function (generalisation of a logistic function to
multinomial outputs) that returns the population output from a linear sum of the features weighted by
−β andα. With this view, we may alternatively regardβ orα as an input parameter that controlsU
andX . Hereafter we simply callU internal activity, andX stimulus-related activity. Similarly, we
callβ an internal component, andα a stimulus component. We consider that the stimulus component
α can be controlled by changing extrinsic stimulus conditions that an experimenter can manipulate.
The stimulus component is written asα(s) if it is a function of a scalar stimulus conditions, such
as stimulus contrast. In contrast, the internal activityβ is not directly controllable by the stimulus
conditions. The spontaneous activity is modelled atβ = 1 andα = 0.

Gain modulation by internal activity. We give a simple example of the maximum entropy model
to show how the internal activity modulates the stimulus-related activity. Figure 1a illustrates an ex-
emplary model composed of 5 neurons. With these particular model parameters (see figure caption),
the stimulus componentα controls activity rates of the first three neurons and their correlations.
The internal componentβ controls background activity rates of all neurons. In our settings, de-
creasingβ increases the baseline activity level of all neurons. Figure 1b displays activity rates of
the individual neurons (〈xi〉 for i = 1, . . . , 5) as a function of the stimulus componentα with a
fixed internal componentβ. Increasingα under these conditions activates the first three neurons
without changing the activity rates of Neuron 4 and 51. Furthermore, the response functions of the
three neurons shift toward left when the background activity rates of all neurons is increased by
decreasingthe internal componentβ (Fig. 1b dashed lines). Thus Neuron 1-3 increase sensitivity
to stimulus componentα. This type of modulation is called input-gain control. For example, ifα

1The activity rates of Neuron 4, 5 do not depend onα becauseb0 does not contain interactions that relate
Neuron 1-3 with Neuron 4, 5. If there are non-zero interactions between any pair from Neuron 1-3 and Neuron
4, 5 inb0, the activity rates of Neuron 4, 5 increase with the increased rates of Neuron 1-3.
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Figure 1: A simple model of gain modulation by a maximum entropy model of 5 neurons. (a) An
illustration of neurons that are activated by a stimulus (neurons in a pink area) and controlled by an
internal mechanism (neurons in a yellow area). The model is constrained by features containing up
to the second order statistics:F(x) = (x1, . . . , x5, x1x2, x1x3, x2x3, . . . , x4x5)

T , where the first
5 elements are parameters for the individual activitiesxi (i = 1, . . . , 5) and the rest of the elements
is the joint activities of two neuronsxixj (i < j). We assume that the stimulus-related activity
is characterised byb1 = (1, 1, 1, 0, 0, 0.3, 0.3, 0.3, 0, . . . , 0). The first 3 elements are parameters
for individual activity of the first three neuronsxi (i = 1, 2, 3). The value0.3 is assigned to the
joint activities of the first three neurons, namely the features specified byx1x2, x1x3, andx2x3.
The internal activity is characterised byb0 = (2, 2, 2, 2, 2, 0, . . . , 0), which regulates activity rates
of individual neurons but does not change their interactions. (b) The activity rates of neurons as a
function of the stimulus componentα at fixed internal components,β = 1.0 (solid line) andβ = 0.8
(dashed line). (c) The stimulus componentX as a function ofα at different internal components.
(d) The relation between the stimulus-related activityX and internal activityU . (e) The Fisher
information about the stimulus componentα.

is a logarithmic function of contrasts of visual stimulation presented to an animal while recording
visual neurons (α(s) = log s), increasing the modulation (decreasingβ) makes neurons respond to
multiplicatively smaller stimulus contrast. This models the contrast gain-control observed in visual
pathways [18,25,28,30]. Other types of nonlinearity in theinput-output relation can be constructed,
depending on the nonlinearity inα(s).

Figure 1c displays a relation of the stimulus componentα with the stimulus-related activityX
at different internal componentβ. Similarly to the activity rates (Fig. 1b), the stimulus-related
activityX is augmented if the internal componentβ is decreased. This nonlinear interaction between
α andβ is caused by the neurons that belong to both stimulus-related and internal activities. In
this example, the stimulus componentα also increases the internal activityU (Fig. 1d) because
of increased activity rates of the shared neurons 1, 2, 3. Finally, Figure 1e displays the variance of
stimulus featureX(x) as a function ofα. It quantifies the information about the stimulus component
α, which we will discuss in the next section.
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3 The conservation of entropy, equation of state, and stimulus information

Conservation of entropy for neural dynamics.The probability mass function, Eq. 4, belongs to the
exponential family distribution. The Lagrange parametersare called natural or canonical parameters.
The activity patterns of neurons are modelled as a linear combination of the two featuresH0(x) and
X(x) using the canonical parameters(−β, α) in the exponent. Expectation of the features are called
the expectation parametersU andX . Either natural or expectation parameters are sufficient to
specify the probability distribution. We review dual structure of the two representations [2], and
show that the relation provides the conservation law of entropy.

Negative entropy of the neural population is computed as

−S = 〈log p(x)〉
= −β〈H0(x)〉+ α〈X(x)〉 − ψ(β, α)

= −Uβ +Xα− ψ(β, α). (6)

Since the log-partition function of Eq. 4 is a cumulant generating function,U andX are related to
the derivatives ofψ(β, α) as

∂ψ(β, α)

∂β
= −〈H0(x)〉 = −U, (7)

∂ψ(β, α)

∂α
= 〈X(x)〉 = X. (8)

Eqs. 6, 7 and 8 form a Legendre transformation fromψ(β, α) to −S(U,X). The inverse Legendre
transformation is constructed using Eq. 6 as well:ψ(β, α) = −βU + αX − (−S(U,X)). Thus
dually to Eqs. 7 and 8, the natural parameters are obtained asderivatives of the entropy with respect
to the expectation parameters,

(

∂S

∂U

)

X

= β, (9)

(

∂S

∂X

)

U

= −α. (10)

The natural parameters represent sensitivities of the entropy to the independent variablesU andX .
From these results, the total derivative ofS(U,X) is written as

dS =

(

∂S

∂U

)

X

dU +

(

∂S

∂X

)

U

dX

= βdU − αdX. (11)

This explains a change of neurons’ entropy by changes in the internal and stimulus-related activities.
We denote an entropy change caused by the internal activity asdSint ≡ βdU , and an entropy change
caused by the extrinsic stimulus asdSext ≡ αdX , respectively. Then Eq. 11 is written as

dS = dSint − dSext (12)

We remark thatdS is an infinitesimal difference of entropies at two close states, and its integral does
not depend on a specific transition between the two states. Incontrast,dSint anddSext represent
production of entropy separately by the internal and stimulus-related activities, and their integrals
depend on the specific paths. Eq. 12 constitutes the conservation of entropy for neural dynamics.
We stress that although it is the first law of thermodynamics,the neurons considered here interact
with an environment differently from conventional thermodynamic systems2. While internal energy
of the conventional systems is indirectly controlled via work and heat, we consider that the internal
activity of neurons is controlled directly by the organism’s internal mechanism. Thus we usedSint

anddSext, rather than the work and heat, as quantities that neurons exchange with an environment.

2We obtaindU = TdS − fdX, usingβ ≡ 1/T andα ≡ βf in Eq. 11. In this form, the expectation
parameterU is a function of(S,X). According to the conventions of thermodynamics, we may call U internal
energy,T temperature of the system, andf force applied to neurons by a stimulus. It is possible to describe the
evoked activity of a neural population using these standardterms of thermodynamics. However, this introduces
the concepts of work and heat.
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Equation of state for a neural population. Eq. 8 is an equation of the state for a neural population,
which we rewrite here as

X(β, α) =
∂ψ(β, α)

∂α
. (13)

Through the log-partition functionψ, this equation relates state variables,β, α, andX , similarly to
e.g., the classical ideal gas law that relates temperature,pressure, and volume. Figure 1c displayed
the equation of state. We note thatψ is related to the Gibbs free energy (see Appendix). Furthermore,
without loss of generality, we can assume that the ground state of the features is zero:H0(0) =
X(0) = 0, wherex = 0 denotes the simultaneous silence of all neurons. We then obtain p(0) =
e−ψ, namely

−ψ(β, α) = log p(0). (14)

Thus −ψ(β, α) is a logarithm of the simultaneous silence probability3. Sinced(log p(0)) =
dp(0)/p(0), −dψ gives a fractional increase of the simultaneous silence probability of the neu-
rons. Accordingly Eq. 13 states that the stimulus-related activity X equals to the fractional decrease
of the simultaneous silence probability by a small change ofα, givenβ.

Information about stimulus. The Fisher informationJ(α) provides the accuracy of estimating a
small change in the stimulus componentα by an optimal decoder. More specifically, the inverse
of the Fisher information provides a lower bound of varianceof an unbiased estimator forα from
a sample. For the exponential family distribution, it is given as the second order derivative of the
log-partition function with respect toα, which is also the variance of stimulus featureX(x):

J(α) ≡

〈

(

∂ log p(x)

∂α

)2
〉

=
∂2ψ(β, α)

∂α2

=
∂X

∂α
= 〈X(x)2〉 − 〈X(x)〉2. (15)

The first equality in the second line of Eq. 15 is obtained using the first order derivative ofψ, namely
the equation of state (Eq. 13). The second equality in Eq. 15 represents the fluctuation-dissipation
relation of the stimulus feature. The equalities show that the Fisher information can be computed in
three different manners given that the internal componentβ is fixed: (i) the second derivative ofψ
with respect toα using the simultaneous silence probability, (ii) the derivative ofX with respect to
α using the equation of state, or (iii) the variance of the stimulus feature.

The Fisher information computed at two fixed internal components was shown in Fig. 1d. The stim-
ulus componentα becomes relatively dominant in characterising the neural activity if the internal
componentβ decreases. This results in the larger Fisher informationJ(α) for the smaller internal
componentβ at givenα. If the stimulus conditions controlls the stimulus component asα(s), and
it is not related toβ, the information abouts is given as∂α(s)∂s J(α)∂α(s)∂s .

4 Information-theoretic cycles by a neural population

We now introduce neural dynamics that models dynamical gain-modulation performed by an inter-
nal mechanism while neurons are processing stimulus. Sincethere are neurons that belong to both
stimulus-related and internal activities, the internal mechanism not only changes the internal activity
but also the stimulus-related activity, which realises themodulation. From an information-theoretic
point of view, this process converts entropy generated by the internal mechanism to entropy associ-
ated with stimulus-related activity after one cycle of the neural response is completed. To explain
this in detail, we first provide an intuitive example of delayed gain-modulation using a dynamical
model, and then provide an ideal cycle that efficiently enhance stimulus information. Using the lat-
ter model, we explain why the process works similarly to a heat engine, and show how to quantify
efficiency of the gain-modulation performed by the internalmechanism.

3Importantly,−ψ is a logarithm of the simultaneous silence probability predicted by the model, Eq. 4. The
observed probability of the simultaneous silence could be different from the prediction if the model is inaccu-
rate. For example, an Ising model can be inaccurate, and it was shown that neural higher-order interactions
significantly contribute to increasing the silence probability [24,38].
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Figure 2: The delayed gain-modulation by internal activity. The parameters of the maximum
entropy model (N = 5) follow those in Fig. 1. (a) An illustration of delayed gain-modulation
described in Eqs. 16 and 17. The stimulus increases the stimulus componentα that activates Neuron
1, 2, and 3. Subsequently, the internal componentβ is increased, which increases the background
activity of all 5 neurons. We assume a slower time constant for the gain-modulation than the stimulus
activation (τβ = 0.1 andτα = 0.05). (b) Top: Dynamics of the stimulus and internal components
(solid lines,γ = 0.5). The internal componentβ without the delayed gain-modulation (γ = 0)
is shown by a dashed black line. Middle: Activity rates [a.u.] of Neuron 1-3 with (solid red)
and without (dashed black) the delayed gain-modulation. Bottom: The Fisher information about
stimulus componentα (Eq. 15). (c) TheX-α (Left) andU -β (Right) phase diagrams. A red solid
cycle represents dynamics when the delayed gain-modulation is applied (γ = 0.5). The dashed line
is a trajectory when the delayed gain-modulation is not applied to the population (γ = 0). (d) Left:
TheU -β phase diagrams of neural dynamics with different combinations ofτβ andγ that achieve
the same level of the maximum modulation (the minimum value of β = 0.9). Right: The Fisher
information about the stimulus componentα for different cycles. The colour code is the same as in
the Left panel. The inset shows the Fisher information aboutthe stimulus intensitys (Eq. 18).

An example of delayed gain-modulation.We first consider a simple dynamical model of delayed
gain-modulation. We use the feature vector,b0 andb1 based on those described in Fig. 1. In this
model, neurons are activated by a stimulus input, which subsequently increases modulation by an
internal mechanism (Fig. 2a). Such a process can be modelledthrough dynamics of the controlling
parameters given by,

τ2αα̇(t) = −ταα(t) + s e−t/τα (16)

τβ β̇(t) = −β(t) + β0 − γα(t) (17)

for t ≥ 0. Heres is intensity of an input stimulus. Neurons are initially at aspontaneous state:
α(0) = 0 andβ(0) = β0 = 1. The top panel of Figure 2b displays the dynamics ofα(t) and
β(t). The population activity is sampled from the maximum entropy model with these dynamical

7



parameters. Here we consider a continuous-time representation of the maximum entropy model4

[12, 13]. The activity rates of neurons are increased by the delayed gain-modulation (solid lines in
Fig. 2b Middle) from those obtained without the modulation (γ = 0; dashed lines). Accordingly, the
information about the stimulus componentα contained in the population activity as quantified by
the Fisher information (Eq. 15) increases and lasts longer by the delayed gain-modulation (Fig. 2b
Bottom). Note that in this example, the information about the stimulus strengths is carried in both
β(t) andα(t) as time passes. The result obtained from the Fisher information abouts using both
β(t) andα(t) is qualitatively the same as the result of the Fisher information aboutα (not shown)5.

TheU -β phase diagram (Fig. 2c Left) shows that dynamics without thegain-modulation is rep-
resented as a line becauseβ is constant. In contrast, dynamics with the gain-modulation forms a
cycle because weaker and then stronger modulation (larger and then smallerβ) is applied to neu-
rons when the internal activityU increases and then decreases, respectively. Similarly, the dynamics
forms a cycle in theX-α plane (Fig. 2c Right) if the stimulus activityX is augmented by the delayed
gain-modulation. By applying the conservation law for entropy (Eq. 12) to the cycle, we obtain

0 =

∮

βdU −

∮

αdX. (19)

Here
∮

βdU ≡ ∆Sint is entropy produced by the internal activity during the cycle due to the de-
layed gain-modulation, and

∮

βdU ≡ ∆Sext is entropy produced by the activity related to extrinsic
stimulus condtions. These are the areas within the circles in the phase diagrams. Eq. 19 states that
the two cycles have the same area (∆Sint = ∆Sext).

The left panel in Figure 2d displays theU -β phase diagram for dynamics with given maximum
strength of modulation (the minimum value ofβ). Among these cycles, larger cycles retain the
information about the stimulus componentα for a longer time period (Fig. 2d Right). The same
conclusion is made from the Fisher information abouts (Fig. 2d an inset in Right panel). The larger
cycles were made because the modulation was only weakly applied to neurons when the internal
activity U increased, then the strong modulation was applied whenU decreased. Such modulation
is considered to be efficient because it allows neurons to retain the stimulus information for a longer
time period by using the slow time-scale ofβ without excessively increasing activity rates of neurons
at its initial rise. In the next section, we introduce the largest cycle that maximises the entropy
produced by the gain modulation when the maximum strength ofthe modulation is given. Using
this cycle, we explain how the cycle works analogously to a heat engine, and define efficiency of the
cycle to retain the stimulus information.

The efficient cycle by a neural population. The largest cycle is made if the modulation is not
applied when the internal activityU increases, then applied whenU decreases. Figure 3 displays a
cycle of hypothetical neural dynamics that maximises the entropy production when the ranges of the
internal component and activity are given. The model parameters follow those in Fig. 1. This cycle
is composed of four steps. The process starts at the state A atwhich neurons exhibit spontaneous
activity (β = βH = 1, α = 0). Figure 3a displays a sample response of the neural population to
a stimulus change. Figure 3b and c display theX-α andU -β phase diagrams of the cycle. Heat
capacity of the neural population and the Fisher information aboutα are shown in Fig. 3d. Details
of the cycle steps are now described as follows.

4Under the assumption that rates of synchronous spike eventsscale withO(∆k), where∆ is a bin size
of discretisation andk is the number of synchronous neurons, Kasset al. [12] proved that it is possible to
construct a continuous-time limit (∆ → 0) of the maximum entropy model that takes the synchronous events
into account. Here we follow their result to consider the continuous-time representation.

5Whenα andβ are both dependent on the stimulus, the Fisher information abouts is given as

J(s) =
∂θ(s)T

∂s
J
∂θ(s)

∂s
, (18)

whereθ(s) ≡ (−β,α)T andJ is a Fisher information matrix given by Eq. 23, which will be discussed in
the later section. We computed Eq. 18 using analytical solutions of the dynamical equations given asα(t) =
st
τα
e−t/τα andβ(t) = 1− sg

τβ−τα

{

τατβ
τβ−τα

(e−t/τβ − e−t/τα)− te−t/τα
}

.

8



1 1.5 2 2.5

0.9

1

U

β

−0.5 0 0.5 1

0.5

1

α

v
a
r 
X
(x
)

0.5 1

1.5

2

X

C

0.5 1

−0.5

0

0.5

1

0

0.2

0.4

N
e

u
ro

n

A B C D A

C

D

B

A

Spike sequences

X

α
a

b

Fisher information J(α) Heat capacityc

Neuron 4, 5

A

D

B

C C

D

B

A B

A

C

D

βL=0.86

βH=1.0

d

Neuron 1, 2, 3

Activity rates

Figure 3: The efficient circle by a neural population (N = 5). The parameters of the maximum
entropy model follow those in Fig. 1. The cycle starts from the state A at whichβ = βH = 1 and
α = 0. See the main text for details of the steps. The efficiency of this cycle is0.14. (a) Top:
Spike raster plots during the cycle. Middle: Activity ratesof neurons. Bottom: The cycle steps.
(b) TheX-α phase diagram. (c) TheU -β phase diagram. (d) Left:X v.s. heat capacity. The heat
capacity is defined asC = 〈h2〉− 〈h〉2, whereh = − log p(x) is information content. Right: Fisher
information about the stimulus componentα.

A→B Increased stimulus responseThe stimulus-related activityX is increased by increasing
the stimulus componentα while the internal component is fixed atβ = βH . In this process
the internal activityU also increases.

B→C Internal computation An internal mechanism decreases the internal componentβ while
keeping the internal activity (dU = 0). In this process the stimulus-related activityX
decreases. The process ends atβ = βL.

C→D Decreased stimulus responseThe stimulus-related activityX is decreased by decreasing
the stimulus componentα while the internal component is fixed atβ = βL. In this process
the internal activityU also decreases.

D→A Internal computation An internal mechanism increases the internal componentβ while
keeping the internal activity (dU = 0). In this process the stimulus-related activityX
increases. The process ends atβ ≡ βH .

The processes B→C and D→A represent additional computation performed by an internal neural
mechanism on the neurons’ stimulus information processing. It is applied after the initial increase
of stimulus-related activity during A→B, therefore manifests delayed modulation. Without these
processes, the neural dynamics is represented as a line in the phase diagrams. The Fisher information
aboutα also increases during the process between C and D (Fig. 3d right panel). We reiterate that the
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Figure 4: An information-theoretic cycle by a neural population.

Fisher information quantifies the accuracy of estimating a small change inα by an optimal decoder.
Thus operating along the path between C and D is more advantageous than the path between A and
B for downstream neurons if their goal is to detect a change inthe stimulus-related activity of the
upstream neurons that is not explained by the internal activity.

Interpretation as an information-theoretic cycle. We start our analysis on the cycle by examining
how much entropy is generated by the internal and stimulus-related activities at each step. First, we
denote by∆Sint

AB and∆Sint
CD the entropy changes caused by the internal activity during the process

A→B and C→D, respectively. Since the internal componentβ is fixed atβH during the process
A→B, we obtain∆Sint

AB = βH∆U , where∆U is a change of the internal activity (see Fig. 3c).
This change in the internal activity is positive (∆U > 0). Since the internal activity does not
change during B→C and D→A, a change of the internal activity during C→D is given by−∆U
(Note that the internal activity is a state variable). We obtain ∆Sint

CD = −βL∆U for the process
during C→D. The total entropy change caused by the internal activity during the cycle is given as
∆Sint

AB + ∆Sint
CD = (βH − βL)∆U , which is positive becauseβH > βL and∆U > 0. Thus the

internal activity increases the entropy of neurons during the cycle. Second, we denote by∆Sext

the total entropy change caused by the stimulus-related activity during the cycle. According to the
conservation law (Eq. 12) applied to this cycle, we obtain

0 = ∆Sint
AB +∆Sint

CD −∆Sext. (20)

Note that the sign of∆Sext = ∆Sint
AB + ∆Sint

CD is positive. Hence the stimulus-related activity
decreases the entropy of neurons during the cycle.

This cycle belongs to the following cycle that is analogous to a heat engine (Fig. 4). In this para-
graph, we temporarily usereceive entropyandemit entropyto express the positive and negative
path-dependent entropy changes caused by the internal or stimulus-related activity in order to fa-
cilitate comparison with a heat engine6. In this cycle, neurons receiveentropyas internal activity
from an environment (∆Sint

in > 0) and emitentropyto the environment (∆Sint
out < 0). The received

entropyas the internal activity is larger than the emittedentropy(∆Sint
in +∆Sint

out > 0). The surplus
entropyis emitted to the environment in the form of the stimulus-related activity (−∆Sext < 0).
Thus we may regard the cycle as the process that produces stimulus-related entropy using entropy
supplied by the internal mechanism. We hereafter denote this cycle as an information-theoretic cy-
cle, or engine. The cycle in Fig. 2 is also regarded as an information-theoretic cycle by separating
the process at which the internal activity is maximised. Theconservation law prohibits a perpet-

6Here we useentropysynonymously with heat in thermodynamics to facilitate thecomparison with a heat
engine. However this is not an accurate description becausethe entropy is a state variable.
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ual information-theoretic cycle that can indefinitely produce the stimulus-related entropy without
entropy production by the internal mechanism7.

Efficiency of a cycle.As we discussed for the example dynamics in Fig. 2, we may consider that
the modulation is efficient if it helps neurons to retain stimulus information without excessively
increasing the internal and stimulus-related activities during the initial response. Such a process was
achieved when gain modulation was only weakly applied to neurons when the internal activityU
increased, then strong gain modulation was applied whenU decreased. We can formally assess this
type of efficiency by defining entropic efficiency, similarlyto thermal efficiency of a heat engine. It
is given by a ratio of the entropy change caused by the stimulus-related activity as opposed to the
entropy change gained by the internal activity as:

η ≡
∆Sext

∆Sint
in

= 1−
|∆Sint

out|

∆Sint
in

. (21)

For the proposed information-theoretic cycle in Fig. 3, it is computed as

ηe = 1−
|∆Sint

CD|

∆Sint
AB

= 1−
βL
βH

, (22)

which is a function of the internal components,βH andβL. This cycle is the most efficient in
terms of the entropic efficiency defined by Eq. 21 when the highest and lowest internal components
and activities are given. The square cycle in theU -β phase diagram (Fig. 3c) already suggests
this claim, and we can formally prove this by comparing the information-theoretic cycle with an
arbitrary cycleC whose internal componentβ satisfiesβL ≤ β ≤ βH

8. Thus the proposed cycle
bounds efficiency of the additional computation made by the delayed gain-modulation mechanism.
We call the proposed cycle in Fig. 3, the ideal information-theoretic cycle. Note that this cycle is
similar to, but different from the Carnot cycle [6] that can be realised by replacing the processes
B→C and D→A with adiabatic processes. The Carnot cycle achieves the highestthermalefficiency.

Geometric interpretation. Finally, to consider conditions for the information-theoretic cycle, we
introduce geometric interpretation of the cycle. Let us denote the internal and stimulus components
asθ = (−β, α)T . In addition, we represent the expected internal and stimulus features byη =
(U,X)T . The parametersθ andη form dually flat affine coordinates, and are calledθ and η-
coordinates in information geometry [2]. For the ideal information-theoretic cycle, we indicate the
parameters at A, B, C, and D using a subscript ofθ or η. For example the parameters at A areθA
andηA.

The first process A→B of the ideal information-theoretic cycle is a straight line (geodesic) between
θA andθB in the curved space ofθ-coordinates. It is called e-geodesic. In addition, the internal
componentβ is fixed while the stimulus component decreases, therefore the e-geodesic is a vertical
line in theθ-coordinates. The second process B→C is the shortest line betweenηB andηC in the
curved space ofη-coordinates. The path is called an m-geodesic. In addition, the internal activity
U is fixed while the stimulus-related activity decreases, therefore the m-geodesic is a vertical line
in the η-coordinates. Similarly, the process C→D is an e-geodesic, and the process D→A is an
m-geodesic.

The change in the internal componentβ during the processes along m-geodesic manifested the
internal computation in the ideal information-theoretic cycle. A small change inθ is related to a
change inη asdη = Jdθ. HereJ is the Fisher information matrix with respect toθ. It is given as

J =

[

〈b0,b0〉 〈b0,b1〉
〈b1,b0〉 〈b1,b1〉

]

, (23)

7This is synonymous with the statement that the first law prohibits a perpetual motion machine of the first
kind, a machine that can work indefinitely without receivingheat.

8Let us consider the efficiencyη achieved by an arbitrary cycleC during which the internal componentβ
satisfiesβL ≤ β ≤ βH . Let the minimum and maximum internal activity in the cycle beUmin andUmax. We
decomposeC into the pathC1 fromUmin toUmax and the pathC2 fromUmax toUmin during which the internal
component is given asβ1(U) andβ2(U), respectively. Because the cycle acts as an engine, we expect β1(U) >
β2(U). The entropy changes produced by the internal activity during the pathCi (i = 1, 2) is computed as
∆Sint

C1
=

∫ Umax

Umin

β1(U) dU ≤ βH
∫ Umax

Umin

dU = βH(Umax − Umin) and |∆Sint

C2
| = |

∫ Umin

Umax
β2(U) dU | ≥

|βL
∫ Umin

Umax
dU | = βL(Umax − Umin). Hence we obtain|∆Sint

C2
|/∆Sint

C1
≥ βL/βH , or η ≤ ηe.
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where〈bi,bj〉 ≡ b
T
i Gbj (i, j = 0, 1) is an inner product of the vectorsbi andbj with a metric

given byG = 〈F(x)F(x)T 〉−〈F(x)〉〈F(x)〉T . Note that〈b0,b0〉 is equivalent to Eq. 15. Likewise,
the small change inη is related to the change inθ by dθ = J

−1dη. Since the m-geodesic processes
B→C and D→A are characterised bydη = (0, dX)T , the small change inθ-coordinates is given as

dθ =

[

−〈b0,b1〉
〈b0,b0〉

]

|J|−1dX, (24)

Conversely, the internal mechanism needs to change the internal and stimulus component according
to the above gradient in order to accomplish the most efficient cycle. Thus if the internal mecha-
nism can not access the stimulus componentα, the ideal information-theoretic cycle is not realised.
Further, if〈b0,b1〉 = 0, the internal componentβ is not allowed to change, which however means
that the entire process does not form a cycle. Therefore we impose〈b0,b1〉 6= 0. This equation
indicates that the modulation by an internal mechanism is achieved through the activity features
shared by the two components. Accordingly, this condition is violated if neurons participate in the
stimulus-related activity and neurons subject to the internal modulation do not overlap (namely if
neurons that appear in the features corresponding to non-zero elements ofb0 are separable from
those ofb1). In general, in order to make a change of the internal component β influence the
stimulus-related activityX , therefore controls stimulus information, one requires〈b0,b1〉 6= 0 be-
causedX = −〈b1,b0〉dβ + 〈b1,b1〉dα from dη = Jdθ.

5 Discussion

In this study, we provided hypothetical neural dynamics that efficiently encodes stimulus informa-
tion with the aid of delayed gain-modulation by an internal mechanism, and demonstrated that the
dynamics forms an information-theoretic cycle that acts similarly to a heat engine. This view pro-
vided us to quantify the efficiency of the gain-modulation inretaining the stimulus information. The
ideal information-theoretic cycle introduced here bounded the entropic efficiency.

As an extension of a logistic activation function of a singleneuron to multinomial outputs, the maxi-
mum entropy model explains probabilities of activity patterns by a softmax function of the features,
therefore allows nonlinear interaction of the inputs (hereβ andα) in producing the stimulus-related
activityX (Fig. 1). This interaction was caused by shared activity features inb1 andb0. The gain
modulation more effectively changes the stimulus-relatedactivity if the features of the stimulus-
related and internal activities resemble (i.e.,〈b1,b0〉 is close to1), which may have implications
in similarity between evoked and spontaneous activities [14] that can be acquired during develop-
ment [3].

The model’s statistical structure common to thermodynamics (the Legendre transformation; see
Appendix) allowed us to construct the first law for neural dynamics (Eq. 12), the equation of state
(Eq. 13), fluctuation-dissipation relation (Eq. 15), and neural dynamics similar to a thermodynamic
cycle (Figs. 2 and 3) although we emphasised the differencesfrom conventional thermodynamics in
terms of the controllable quantities. The dynamics forms a cycle if the gain modulation is applied
after the initial increase of the stimulus-related activity. This scenario is expected when the stimulus
response is modulated by a feedback mechanism of recurrent networks [31,41,42], and is associated
with short-term memory of the stimulus [31, 32]. Consistently with the idea of efficient stimulus-
encoding by a cycle, effect of attentional modulation on neural response typically appears several
hundred milliseconds after stimulus onset (later than the onset of the stimulus response) [9, 17, 19,
22,28,34] although the temporal profile can be altered by task design [9,17].

To apply the theory to empirical data, the internal and stimulus feature need to be specified. Since
even spontaneous neural activity is known to exhibit ongoing dynamics [14], estimation of these
features is nontrivial. The optimal sequential Bayesian algorithms have been proposed to smoothly
estimate the parameters of the neural population model whenthey vary in time [35–37]. These ap-
proaches can be used to select dominant features of spontaneous and evoked activities, and then to
estimate the time-varying internal and stimulus-related components. By including multiple stimulus
features in the model, the theory is expected to make quantitative predictions on competitive mech-
anisms of selective attention [17, 21, 22, 27]. The conservation law of entropy imposes competition
among the stimuli given a limited entropic resource generated by the internal mechanism.
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In sum, a neural population that works as an information-theoretic engine produces entropy ascribed
to stimulus-related activity out of entropy supplied by an internal mechanism. This process is ex-
pected to appear during stimulus response of neurons subject to feedback gain-modulation. It is
thus hoped that quantitative assessment of the neural dynamics as an information-thertoeic cycle
contributes to understanding neural computation performed internally in an organism.
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Appendix: Free energies of neurons

In this appendix, we introduce free energies of a neural population. Let us first discuss the relation
of state variables and free energies that appear in our analysis of the neural population with those
found in conventional thermodynamics. Assume that the small change in internal activity of neurons
has the following linear relations to entropyS, expected featureX , and the number of neuronsN :

dU = TdS + fdX + µdN. (25)

Eq. 25 is the first law of thermodynamics, and the parameters are temperatureT , force f , and
chemical potentialµ. The first law describes the internal activity as a function of (S,X,N). In
thermodynamics, the Helmholtz free energyF = U − TS , Gibbs free energyG = F − fX , or
enthalpyH = U − fX are introduced to change the independent variables to(T,X,N), (T, f,N),
and(S, f,N), respectively. These free energies are useful to analyse isothermal or other processes
in which only one of the independent variables is changed. For example, the Helmholtz free energy
can be used to compute the work done by forcef under the isothermal condition. However, the
concepts of the force and work may not be directly relevant toinformation-theoretic analysis of a
neural population. Here we introduce the free energies thatare more consistent with the framework
based on entropy changes.

The first law is alternatively written as

dS = βdU − αdX − γdN, (26)

Here we usedβ = 1/T ,α = f/T , andγ = µ/T . This first law describes a small entropy change as
a function of(U,X,N). The parameters are defined as

β(U,X,N) =

(

∂S

∂U

)

X,N

, (27)

α(U,X,N) = −

(

∂S

∂X

)

N,U

, (28)

γ(U,X,N) = −

(

∂S

∂N

)

U,X

. (29)

We change the independent variableU to β. For this goal, here we define thescaledHelmholtz free
energyF as

F = S − βU. (30)

Note thatF = −βF . It is a function that changes the independent variables from (S,X,N) to
(β,X,N). This can be confirmed from the total derivative ofF : dF = dS − d(βU) = −Udβ −
αdX − γdN . From this equation, we have

U(β,X,N) = −

(

∂F

∂β

)

X,N

, (31)

α(β,X,N) = −

(

∂F

∂X

)

N,β

, (32)

γ(β,X,N) = −

(

∂F

∂N

)

β,X

. (33)
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The entropy change caused by the stimulus-related activitywhenX changes fromX1 toX2 is given
by the area under the curve ofα(β,X,N) in theX-α phase plane. From Eq. 32, if the process
satisfiesdβ = dN = 0, the entropy change is computed as reduction of the scaled Helmholtz free
energy as

∆Sext =

∫ X2

X1

α(β,X,N) dX = F(β,X2, N)−F(β,X1, N). (34)

Further change of the independent variables from(β,X,N) to (β, α,N) is done by introducing the
scaledGibbs free energy:

G = F + αX = S − βU + αX. (35)

Note thatG = −βG. The independent variables of the Gibbs free energy are(β, α,N) since
dG = dF + (dαX +Xdα) = −Udβ +Xdα− γdN . From this equation, we find

(

∂G

∂β

)

α,N

= −U(β, α,N), (36)

(

∂G

∂α

)

β,N

= X(β, α,N). (37)

Note that the definition of the Gibbs free energy by Eq. 35 is obtained from Eq. 6 if we identify
G = ψ. Accordingly, Eqs. 36 and 37 coincide with Eqs. 7 and 8.
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