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The time histogram method is the most basic tool for capturing a time-
dependent rate of neuronal spikes. Generally in the neurophysiological
literature, the bin size that critically determines the goodness of the fit
of the time histogram to the underlying spike rate has been subjectively
selected by individual researchers. Here, we propose a method for ob-
jectively selecting the bin size from the spike count statistics alone, so
that the resulting bar or line graph time histogram best represents the
unknown underlying spike rate. For a small number of spike sequences
generated from a modestly fluctuating rate, the optimal bin size may
diverge, indicating that any time histogram is likely to capture a spuri-
ous rate. Given a paucity of data, the method presented here can nev-
ertheless suggest how many experimental trials should be added in or-
der to obtain a meaningful time-dependent histogram with the required
accuracy.

1 Introduction

Neurophysiological studies are based on the idea that information is trans-
mitted between cortical neurons by spikes (Johnson, 1996; Dayan & Abbott,
2001). A number of filtering algorithms have been proposed for estimat-
ing the instantaneous activity of an individual neuron or the joint activity
of multiple neurons (DiMatteo, Genovese, & Kass, 2001; Wiener & Rich-
mond, 2002; Sanger, 2002; Kass, Ventura, & Cai, 2003; Brockwell, Rojas, &
Kass, 2004; Kass, Ventura, & Brown, 2005; Brown, Kass, & Mitra, 2004). The
most basic and frequently used tool for spike rate estimation is the time
histogram method. For instance, one aligns spike sequences at the onset
of stimuli repeatedly applied to an animal and describes the response of a
single neuron with a peristimulus time histogram (PSTH) or the responses
of multiple neurons with a joint PSTH (Adrian, 1928; Gerstein & Kiang,
1960; Gerstein & Perkel, 1969; Abeles, 1982).

The shape of a PSTH is largely dependent on the choice of the bin size.
With a bin size that is too large, one cannot represent the time-dependent
spike rate. And with a bin size that is too small, the time histogram
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fluctuates greatly, and one cannot discern the underlying spike rate. There
is an appropriate bin size for each set of spike sequences, which is based on
the goodness of the fit of the PSTH to the underlying spike rate. For most
previously published PSTHs, however, the bin size has been subjectively
selected by the authors.

For data points distributed compactly, there are classical theories about
how the optimal bin size scales with the total number of data points n. It
was proven that the optimal bin size scales as n−1/3 with regard to the bar-
graph-density estimator (Révész, 1968; Scott, 1979). It was recently found
that for two types of infinitely long spike sequences, whose rates fluctuate
either smoothly or jaggedly, the optimal bin sizes exhibit different scaling
relations with respect to the number of sequences, timescale, and amplitude
of rate modulation (Koyama & Shinomoto, 2004).

Though interesting, the scaling relations are valid only for a large amount
of data and are of limited use in selecting a bin size. We devised a method
of selecting the bin size of a time histogram from the spike data. In the
course of our study, we realized that a theory on the empirical choice of
the histogram bin size for a probability density function was presented
by Rudemo (1982). Although applicable to a Poisson point process, this
theory appears to have rarely been used by neurophysiologists in analyses
of PSTHs. In the actual procedure of neurophysiological experiments, the
number of trials (spike sequences) plays an important role in determining
the resolution of a PSTH and thus in designing experiments. Therefore, it
is preferable to have a theory that accords with the common protocol of
neurophysiological experiments in which a stimulus is repeated to extract
a signal from a neuron. Given a set of experimental data, we wish to not
only determine the optimal bin size, but also estimate how many more
experimental trials should be performed in order to obtain a resolution we
deem sufficient.

For a small number of spike sequences derived from a modestly fluc-
tuating rate, the estimated optimal bin size may diverge, implying that by
constructing a PSTH, it is likely that one obtains spurious results for the
spike rate estimation (Koyama & Shinomoto, 2004). Because a shortage of
data underlies this divergence, one can carry out more experiments to obtain
a reliable rate estimation. Our method can suggest how many sequences
should be added in order to obtain a meaningful time histogram with the
required accuracy. As an application of this method, we also show that the
scaling relations of the optimal bin size that appears for a large number of
spike sequences can be examined from a relatively small amount of data.
The degree of the smoothness of an underlying rate process can be esti-
mated by this method. In addition to a bar graph (piecewise constant) time
histogram, we also designed a method for creating a line graph (piecewise
linear) time histogram, which is superior to a bar graph in the goodness of
the fit to the underlying spike rate and in comparing multiple responses to
different stimulus conditions.
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These empirical methods for the bin size selection for a bar and a line
graph histogram, estimation of the number of sequences required for the
histogram, and estimation of the scaling exponents of the optimal bin size
were corroborated by theoretical analysis derived for a generic stochastic
rate process. In the next section, we develop the bar graph (peristimulus)
time histogram (Bar-PSTH) method, which is the most frequently used
PSTH. In the appendix, we develop the line graph (peristimulus) time
histogram (Line-PSTH) method.

2 Optimization of the Bar Graph Time Histogram

We consider sequences of spikes repeatedly recorded from a single neuron
under identical experimental conditions. A recent analysis revealed that
in vivo spike trains are not simply random, but possess interspike inter-
val distributions intrinsic and specific to individual neurons (Shinomoto,
Shima, & Tanji, 2003; Shinomoto, Miyazaki, Tamura, & Fujita, 2005). How-
ever, spikes accumulated from a large number of spike trains are in the
majority mutually independent and can be regarded as being derived from
a time-dependent Poisson point process (Snyder, 1975; Daley & Vere-Jones,
1988; Kass et al., 2005).

It would be natural to assess the goodness of the fit of the estimator λ̂t

to the underlying spike rate λt over the total observation period T by the
mean integrated squared error (MISE),

MISE ≡ 1
T

∫ T

0
E (λ̂t − λt)2 dt, (2.1)

where E refers to the expectation over different realizations of point events,
given λt . We begin with a bar graph time histogram as λ̂t and explore a
method to select the bin size that minimizes the MISE. The difficulty of the
problem comes from the fact that the underlying spike rate λt is not known.

A bar graph time histogram is constructed simply by counting the num-
ber of spikes that belong to each bin of width �. For an observation period T ,
we obtain N = �T/�� intervals. The number of spikes accumulated from
all n sequences in the ith interval is counted as ki . The bar height at the
ith bin is given as ki/n�. Figure 1 shows the schematic diagram for the
construction of a bar graph time histogram.

Given a bin of width �, the expected height of a bar graph for t ∈ [0,�]
is the time-averaged rate,

θ = 1
�

∫ �

0
λt dt. (2.2)
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Figure 1: Bar-PSTH. (A) An underlying spike rate, λt . The horizontal bars indi-
cate the time-averaged rates θ for individual bins of width �. (B) Sequences of
spikes derived from the underlying rate. (C) A time histogram for the sample
sequences of spikes. The estimated rate θ̂ is the total number of spikes k that
entered each bin, divided by the number of sequences n and the bin size �.

The total number of spikes k from n spike sequences that enter this bin of
width � obeys the Poisson distribution,

p(k | n�θ ) = (n�θ )k

k!
e−n�θ , (2.3)

whose expectation is n�θ . The unbiased estimator for θ is denoted as θ̂ =
k/(n�), which is the empirical height of the bar graph for t ∈ [0,�].

2.1 Selection of the Bin Size. By segmenting the total observation pe-
riod T into N intervals of size �, the MISE defined in equation 2.1 can be
rewritten as

MISE = 1
�

∫ �

0

1
N

N∑
i=1

{
E ( θ̂i − λt+(i−1)� )2} dt, (2.4)

where θ̂i ≡ ki/(n�). Hereafter, we denote the average over the segmented
rate λt+(i−1)� as an average over an ensemble of (segmented) rate functions



The Bin Size of a Time Histogram 1507

{λt} defined on an interval of t ∈ [0,�], as

MISE = 1
�

∫ �

0

〈
E ( θ̂ − λt )2〉 dt. (2.5)

The expectation E refers to the average over the spike count, or θ̂ = k/(n�),
given a rate function λt , or its mean value θ .

The MISE can be decomposed into two parts:

MISE = 〈E(θ̂ − θ )2〉 + 1
�

∫ �

0

〈
(λt − θ )2〉dt. (2.6)

The first and second terms are, respectively, the stochastic fluctuation of the
estimator θ̂ around the expected mean rate θ and the averaged temporal
fluctuation of λt around its mean θ over an interval of length �.

The second term of equation 2.6 can be decomposed further into two
parts:

1
�

∫ �

0
〈(λt − 〈θ〉 + 〈θ〉 − θ )2〉dt = 1

�

∫ �

0
〈(λt − 〈θ〉)2〉 dt − 〈(θ − 〈θ〉)2〉.

(2.7)

The first term in equation 2.7 represents a mean squared fluctuation of the
underlying rate λt from the mean rate 〈θ〉 and is independent of the bin size
�, because

1
�

∫ �

0
〈(λt − 〈θ〉)2〉 dt = 1

T

∫ T

0
(λt − 〈θ〉)2 dt. (2.8)

We define a cost function by subtracting this term from the original MISE,

Cn(�) ≡ MISE − 1
T

∫ T

0
(λt − 〈θ〉)2 dt

= 〈E(θ̂ − θ )2〉 − 〈(θ − 〈θ〉)2〉. (2.9)

This cost function corresponds to the risk function in Rudemo (1982, equa-
tion 2.3), obtained by direct decomposition of the MISE. The second term in
equation 2.9 represents the temporal fluctuation of the expected mean rate
θ for individual intervals of period �. As the expected mean rate θ is not
an observable quantity, we have to replace the fluctuation of the expected
mean rate with that of the observable estimator θ̂ . Using the decomposition
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rule for an unbiased estimator (E θ̂ = θ ),

〈E(θ̂ − 〈E θ̂〉)2〉 = 〈E(θ̂ − θ )2〉 + 〈(θ − 〈θ〉)2〉, (2.10)

the cost function is transformed into

Cn (�) = 2
〈
E(θ̂ − θ )2〉 − 〈

E(θ̂ − 〈E θ̂〉)2〉 . (2.11)

Due to the assumed Poisson nature of the point process, the number of
spikes k counted in each bin obeys a Poisson distribution; the variance of
k is equal to the mean. For the estimated rate defined as θ̂ = k/(n�), this
variance-mean relation corresponds to

E(θ̂ − θ )2 = 1
n�

E θ̂ . (2.12)

By incorporating equation 2.12 into equation 2.11, the cost function is given
as a function of the estimator θ̂ ,

Cn (�) = 2
n�

〈
E θ̂

〉 − 〈
E(θ̂ − 〈E θ̂〉)2〉 . (2.13)

The optimal bin size is obtained by minimizing the cost function Cn(�), as

�∗ ≡ arg min
�

Cn(�). (2.14)

By replacing the expectation with the sample spike count, the cost function
(see equation 2.13) is converted into this useful recipe:

Algorithm 1: A Method for Bin Size Selection for a Bar-PSTH

i. Divide the observation period T into N bins of width �, and count
the number of spikes ki from all n sequences that enter the ith bin.

ii. Construct the mean and variance of the number of spikes {ki } as

k̄ ≡ 1
N

N∑
i=1

ki , and v ≡ 1
N

N∑
i=1

(ki − k̄)2.

iii. Compute the cost function:

Cn(�) = 2k̄ − v

(n�)2 .

iv. Repeat i through iii while changing the bin size � to search for �∗

that minimizes Cn(�).
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2.2 Extrapolation of the Cost Function. With the method developed in
the preceding section, we can determine the optimal bin size for a given set
of experimental data. In this section, we develop a method to estimate how
the optimal bin size decreases when more experimental trials are added to
the data set: given n sequences, the method provides the cost function for
m(	= n) sequences.

Assume that we are in possession of n spike sequences. The fluctuation
of the expected mean rate 〈(θ − 〈θ〉)2〉 in equation 2.10 is replaced with the
empirical fluctuation of the time histogram θ̂n using the decomposition rule
for the unbiased estimator θ̂n satisfying E θ̂n = θ ,

〈
E(θ̂n − 〈E θ̂n〉)2〉 = 〈

E(θ̂n − θ )2〉 + 〈
(θ − 〈θ〉)2〉 . (2.15)

The expected cost function for m sequences can thus be obtained by substi-
tuting the above equation into equation 2.9, yielding

Cm (�|n) = 〈
E(θ̂m − θ )2〉 + 〈

E(θ̂n − θ )2〉 − 〈
E(θ̂n − 〈E θ̂n〉)2〉 . (2.16)

Using the variance-mean relation for a Poisson distribution, equation 2.12,
and

E(θ̂m − θ )2 = 1
m�

E θ̂m = 1
m�

E θ̂n, (2.17)

we obtain

Cm (�|n) =
(

1
m

− 1
n

)
1
�

〈
E θ̂n

〉 + Cn (�) , (2.18)

where Cn (�) is the original cost function (see equation 2.13) computed
using the estimators θ̂n. By replacing the expectation with sample spike
count averages, the cost function for m sequences can be extrapolated with
this formula, using the sample mean k̄ and variance v of the numbers of
spikes, given n sequences and the bin size �. The extrapolation method is
summarized as algorithm 2:

Algorithm 2: A Method for Extrapolating the Cost Function for a
Bar-PSTH

A. Construct the extrapolated cost function,

Cm (�|n) =
(

1
m

− 1
n

)
k̄

n�2 + Cn(�),
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using the sample mean k̄ and variance v of the number of spikes
obtained from n sequences of spikes. Cn(�) is the cost function
computed for n sequences of spikes with algorithm 1.

B. Search for �∗
m that minimizes Cm (�|n).

C. Repeat A and B while changing m, and plot 1/�∗
m versus 1/m

to search for the critical value 1/m = 1/n̂c above which 1/�∗
m

practically vanishes.

It may come to pass that the original cost function Cn(�) computed for
n spike sequences does not have a minimum or has a minimum at a bin
size comparable to the observation period T . Because of the paucity of
data, one may consider carrying out more experiments to obtain a reliable
rate estimation. The critical number of sequences nc above which the cost
function has a finite bin size �∗ may be estimated in the following manner.
With a large �, the cost function can be expanded as

Cn(�) ∼ µ

(
1
n

− 1
nc

)
1
�

+ u
1

�2 , (2.19)

where we have introduced nc and u, which are independent of n. The
optimal bin size undergoes a phase transition from the vanishing 1/�∗ for
n < nc to a finite 1/�∗ for n > nc . The inverse optimal bin size is expanded
in the vicinity of nc as 1/�∗ ∝ (1/n − 1/nc). We can estimate the critical
value n̂c (see Figure 3) by applying this asymptotic relation to the set of �̂∗

m
estimated from Cm(�|n) for various values of m:

1
�∗

m
∝

(
1
m

− 1
n̂c

)
. (2.20)

The minimum number of sequences required for the construction of a Bar-
PSTH is estimated from �n̂c. It should be noted that there are cases that the
optimal bin size exhibits a discontinuous divergence from a finite value.
Even in such cases, the plot of {1/m, 1/�∗} could be useful in exploring the
discontinuous transition from nonvanishing values of 1/�∗ to practically
vanishing values.

In the opposite extreme, with a sufficiently large number of spike se-
quences, our method selects a small bin size. It is known that the optimal
bin size exhibits a power law scaling with respect to the number of se-
quences n. The exponent of the scaling relation depends on the smoothness
of the underlying rate (Koyama & Shinomoto, 2004). Given a large number
of spike sequences, the method for extrapolating the cost function can also
be used to estimate the optimal bin size for a larger number of spike se-
quence m > n, and further estimate the scaling exponent representing the
smoothness of the underlying rate.
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2.3 Theoretical Analysis on the Optimal Bin Size. To verify the empir-
ical methods, we obtain the theoretical cost function of a Bar-PSTH directly
from a process with a known underlying rate. Note that this theoretical
cost function is not available in real experimental conditions in which the
underlying rate is not known.

The estimator θ̂ ≡ k/(n�) is a uniformly minimum variance unbiased
estimator (UMVUE) of θ , which achieves the lower bound of the Cramér-
Rao inequality (Blahut, 1987; Cover & Thomas, 1991),

E(θ̂ − θ )2 =
[
−

∞∑
k=0

p (k | n�θ )
∂2 log p (k | n�θ )

∂θ2

]−1

= θ

n�
. (2.21)

Inserting this into equation 2.9, the cost function is represented as

Cn (�) = 〈θ〉
n�

− 〈(θ − 〈θ〉)2〉

= µ

n�
− 1

�2

∫ �

0

∫ �

0
φ (t1 − t2) dt1dt2, (2.22)

where µ = 〈θ〉 is the mean rate, and φ(t1 − t2) = 〈(λt1 − µ)(λt2 − µ)〉 is the
autocorrelation function of the rate fluctuation, λt − µ. To obtain the last
equation, we used

〈(θ − 〈θ〉)2〉 =
〈{

1
�

∫ �

0
(λt − µ) dt

}2〉

= 1
�2

∫ �

0

∫ �

0
〈(λt1 − µ)(λt2 − µ)〉 dt1dt2. (2.23)

The cost function with a large bin size can be rewritten as

Cn (�) = µ

n�
− 1

�2

∫ �

−�

(� − |t|)φ(t) dt

∼ µ

n�
− 1

�

∫ ∞

−∞
φ(t) dt + 1

�2

∫ ∞

−∞
|t|φ(t) dt, (2.24)

based on the symmetry φ(t) = φ(−t) for a stationary process. Equation 2.24
can be identified with equation 2.19 with parameters

nc = µ∫ ∞
−∞ φ(t) dt

(2.25)
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u =
∫ ∞

−∞
|t|φ(t) dt. (2.26)

For the process giving the correlation of the form φ (t) = σ 2e−|t|/τ and the
process giving a gaussian correlation φ(t) = σ 2e−t2/τ 2

used in the simulation
in the next section, the critical numbers are obtained as nc = µ/2σ 2τ and
nc = µ/σ 2τ

√
π , respectively.

Based on the same theoretical cost function, equation 2.22, we can also
derive scaling relations of the optimal bin size, which is achievable with
a large number of spike sequences. With a small �, the correlation of rate
fluctuation φ(t) can be expanded as φ (t) = φ (0) + φ′ (0+) |t| + 1

2φ′′ (0) t2 +
O

(|t|3), and we obtain an expansion of equation 2.22 with respect to �,

Cn(�) = µ

n�
− φ (0) − 1

3
φ′ (0+) � − 1

12
φ′′ (0) �2 + O(�3). (2.27)

The optimal bin size �∗ is obtained from dCn (�) /d� = 0. For a rate that
fluctuates smoothly in time, the correlation function is a smooth function of
t, resulting in φ′(0) = 0 due to the symmetry φ(t) = φ(−t). In this case, we
obtain the scaling relation

�∗ ∼
(

− 6µ

φ′′ (0) n

)1/3

. (2.28)

For a rate that fluctuates in a zigzag pattern, in which the correlation
of rate fluctuation has a cusp at t = 0 (φ′(0+) < 0), we obtain the scaling
relation

�∗ ∼
(

− 3µ

φ′(0+)n

)1/2

, (2.29)

by ignoring the second-order term. Examples that exhibit this type of scal-
ing are the Ornstein-Uhlenbeck process and the random telegraph pro-
cess (Kubo, Toda, & Hashitsume, 1985; Gardiner, 1985).

The scaling relations, equation 2.28 and equation 2.29, are the general-
ization of the ones found in Koyama and Shinomoto (2004) for two specific
time-dependent Poisson processes.

3 Application of the Method to Spike Data

In this section, we apply the methods for the bar graph (peristimulus) time
histogram (Bar-PSTH) and the line graph (peristimulus) time histogram
(Line-PSTH) to (1) spike sequences (point events) generated by the simula-
tions of time-dependent Poisson processes and (2) spike sequences recorded
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from a neuron in area MT. The methods for a Line-PSTH are summarized
in the appendix.

3.1 Application to Simulation Data. We applied the method for es-
timating the optimal bin size of a Bar-PSTH to a set of spike sequences
derived from a time-dependent Poisson process. Figure 2A shows the em-
pirical cost function Cn(�) computed from a set of n spike sequences. The
empirical cost function is in good agreement with the theoretical cost func-
tion computed from the mean spike rate µ and the correlation φ(t) of the
rate fluctuation, according to equation 2.22. In Figure 2D, a time histogram
with the optimal bin size is compared with those with nonoptimal bin sizes,
demonstrating the effectiveness of optimizing the bin size.

Algorithm 2 provides an estimate of how many sequences should be
added for the construction of a Bar-PSTH with the resolution we deem
sufficient. In this method, the cost function of m sequences is obtained
by modifying the original cost function, Cn (�), computed from the spike
count statistics of n sequences of spikes. In subsequent applications of this
extrapolation method, the original cost function, Cn (�), was obtained by
averaging over the initial partitioning positions.

We applied this extrapolation method for a Bar-PSTH to a set of spike
sequences derived from the smoothly regulated Poisson process. Figure 3A
depicts the extrapolated cost function Cm (�|n) for several values of m, com-
puted from a given set of n(= 30) spike sequences. Figure 3B represents the
dependence of an inverse optimal bin size 1/�∗

m on 1/m. The inverse opti-
mal bin size, 1/�∗

m, stays near 0 for 1/m > 1/n̂c and departs from 0 linearly
with m for 1/m ≤ 1/ n̂c . By fitting the linear function, we estimated the crit-
ical number of sequences n̂c . In Figure 3C, the critical number of sequences
n̂c estimated from a smaller or larger n is compared to the theoretical value
of nc computed from equation 2.25. It is noteworthy that the estimated n̂c

approximates the theoretical nc well even from a fairly small number of
spike sequences, with which the estimated optimal bin size diverges.

We also constructed a method for selecting the bin size of a Line-PSTH,
which is summarized as algorithm 3 in the appendix. Figure 4 compares the
optimal Bar-PSTH and the optimal Line-PSTH obtained from the same set
of spike sequences, demonstrating the superiority of the Line-PSTH to the
Bar-PSTH in the sense of the MISE. In addition, the Line-PSTH is suitable
for comparing multiple time-dependent rates, as is the case for filtering
methods. The extrapolation method for a Line-PSTH is summarized as
algorithm 4 in the appendix.

With the extrapolation method for a Bar-PSTH (see algorithm 2), one
can also estimate how much the optimal bin size decreases (i.e., the res-
olution increases) with the number of spike sequences. Figure 5A shows
log-log plots of the optimal bin sizes �∗

m versus m with respect to two rate
processes that fluctuate either smoothly according to the stochastic pro-
cess characterized by the mean spike rate µ and the correlation of the rate
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Figure 2: Construction of the optimal Bar-PSTH from spike sequences. (A) Dots:
An empirical cost function, Cn(�), computed from spike data according to al-
gorithm 1. Here, 50 sequences of spikes for an interval of 20 [s] are derived
from a time-dependent Poisson process characterized by the mean rate µ and
the correlation of the rate fluctuation φ(t) = σ 2e−t2/τ2

, with µ = 30 [spikes/s],
σ = 10 [spikes/s], and τ = 0.1 [s]. Solid line: The theoretical cost function
computed directly from the underlying fluctuating rate using equation 2.22.
(B) The underlying fluctuating rate λt. (C) Spike sequences derived from the rate.
(D) Time histograms made using three types of bin sizes: too small, optimal,
and too large.

process φ (t) = σ 2e−t2/τ 2
or in a zigzag pattern according to the Ornstein-

Uhlenbeck process characterized by the mean rate µ and the correlation
of the rate process φ (t) = σ 2e−|t|/τ . These plots exhibit power law scaling
relations with distinctly different scaling exponents. The estimated expo-
nents (−0.34 ± 0.04 for the smooth rate process and −0.56 ± 0.04 for the
zigzag rate process) are close to the exponents of m−1/3 and m−1/2 that were
obtained analytically as in equations 2.28 and 2.29 (see also Koyama &
Shinomoto, 2004). In this way, we can estimate the degree of smoothness of
the underlying rate from a reasonable amount of spike data.

With the extrapolation method for a Line-PSTH (see algorithm 4 in the
appendix), the scaling relations for a Line-PSTH can be examined in a
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Figure 3: Extrapolation method. (A) Extrapolated cost functions Cm (�|n) of
a Bar-PSTH for several values of m, computed from 30 sequences of spikes
derived from a Poisson process characterized by the mean rate µ and the cor-
relation of the rate fluctuation φ(t) = σ 2e−t2/τ2

, with µ = 30, σ = 2, and τ = 0.1.
The modestly fluctuating rate with σ = 2 is used as compared with the rate
with σ = 10 used in Figure 1. (B) The inverse optimal bin size 1/�∗

m plotted
against 1/m. A solid line is a linear function fitted to the data. (C) The critical
number of sequences n̂c extrapolated from a smaller or larger number of spike
sequences. The horizontal axis represents the number of spike sequences n used
to obtain the extrapolated cost function Cm (�|n). The vertical axis represents an
extrapolated critical number n̂c . The dashed lines represent a theoretical value
nc computed using equation 2.25 and a diagonal.

similar manner. Figure 5B represents the optimal bin sizes computed for
two rate processes that fluctuate either smoothly or in a zigzag pattern.
The estimated exponents are −0.24 ± 0.04 for the smooth rate process and
−0.50 ± 0.05 for the zigzag rate process. The exponents obtained by the
extrapolation method are similar to the analytically obtained exponents,
m−1/5 and m−1/2 respectively (see equations A.12 and A.13). Note that for
the smoothly fluctuating rate process, the scaling relation for the Line-PSTH
is m−1/5, whereas the scaling relation for a Bar-PSTH is m−1/3. In contrast,
for the rate process that fluctuates jaggedly, the exponents of the scaling
relations for both a Bar-PSTH and a Line-PSTH are m−1/2.



1516 H. Shimazaki and S. Shinomoto

A B

Time, t

20

40

^

0

20

40

^

0

Bar-PSTH Line-PSTH

0 2 3 01 321
Time, t

Figure 4: Comparison of the optimal Bar-PSTH and the optimal Line-PSTH.
The spike data used are the same as the data used in Figure 2. (A) The optimal
Bar-PSTH constructed from the spike sequences derived from an underlying
fluctuating rate process (dashed line). (B) The optimal Line-PSTH constructed
from the same set of spike sequences.
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Figure 5: Scaling relations for the Bar-PSTH and the Line-PSTH. The optimal bin
sizes �∗

m are estimated from the extrapolated cost function Cm (�|n), computed
from 100 sequences of spikes. The optimal bin sizes �∗

m versus m is shown in
log-log scale. Two types of rate processes were examined: one that fluctuates
smoothly, which is characterized by the correlation of the rate fluctuation φ (t) =
σ 2e−t2/τ2

, and the other that fluctuates jaggedly, which is characterized by the
correlation of the rate fluctuation φ (t) = σ 2e−|t|/τ . The parameter values are the
same as the ones used in Figure 2. (A) Log-log plots of the optimal bin size
with respect to m for a Bar-PSTH. Lines are fitted to the data in an interval
of m ∈ [50, 500], whose regression coefficients, −0.34 ± 0.04 and −0.56 ± 0.04,
correspond to the scaling exponents for a Bar-PSTH. (B) Log-log plots of the
optimal bin size with respect to m for a Line-PSTH. Lines are fitted to the data
in an interval of m ∈ [50, 500], whose regression coefficients, −0.24 ± 0.04 and
−0.50 ± 0.05, correspond to the scaling exponents for a Line-PSTH.
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3.2 Application to Experimental Data. We also applied our method
for optimizing a Bar-PSTH to publicly available neuronal spike data (Brit-
ten, Shadlen, Newsome, & Movshon, 2004). The details of the experimental
methods are described in Newsome, Britten, and Movshon (1989) and Brit-
ten, Shadlen, Newsome, & Movshon (1992). It was reported that the neurons
in area MT exhibit highly reproducible temporal responses to identical vi-
sual stimuli (Bair & Koch, 1996). The estimation of a time-dependent rate
by a PSTH is, however, sensitive to the choice of the bin size. Therefore it
would be preferable for such an appraisal of the reproducibility to be tested
with our objective method of optimizing the bin size. To make a reliable
estimate of the optimal bin size from the spike sequences of a short obser-
vation period, we took an average of the cost functions computed under
different partitioning positions.

We examine here the data recorded from a neuron under the repeated
application of a random dot visual stimulus with 3.2% of coherent motion
(w052, nsa2004.1, Britten et al., 2004). The method for a Bar-PSTH was
applied to the data, with close attention paid to how the optimal bin size
changes with the number of spike sequences sampled. Figure 6 depicts the
results for the first n = 5, the first n = 20 and the total n = 50 sequences of
spikes.

The optimal bin size practically diverges (�∗ = 1000 [ms]) for the n = 5
sequences, implying that with this small amount of data, a discussion about
the time-dependent response does not make sense, as far as we rely on the
histogram method. Even in this stage, it is possible to extrapolate the cost
function by means of algorithm 2. The critical number of trials, above which
the optimal bin size is finite, was estimated as n̂c ≈ 12. By increasing the
number of spikes to n = 20, we obtained the optimal bin size �∗ = 33 [ms],
implying that a discussion about the neuronal response is possible based
on this amount of data. The critical number of trials estimated from this
data set (n = 20) is n̂c ≈ 10. The optimal bin size for the total 50 sequences
is �∗ = 23 [ms]. The critical number of sequences estimated from the total
50 sequences is n̂c ≈ 12.

Algorithm 1 confirms that the temporal rate modulation can be discussed
with a sufficiently large number of sequences, such as n = 20 or n = 50. With
algorithm 2, three sets of sequences with n = 5, 20, and 50 suggest the critical
number of sequence to be n̂c ≈ 10–12.

4 Discussion

We have developed a method for selecting the bin size, so that the Bar-
PSTH (see section 2) or the Line-PSTH (see the appendix) best represents
the (unknown) underlying spike rate. The suitability of this method was
demonstrated by applying it to not only model spike sequences gener-
ated by time-dependent Poisson processes, but also real spike sequences
recorded from cortical area MT of a monkey.
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Figure 6: The Bar-PSTHs for the spike sequences recorded from a MT neuron
(w052 in nsa2004.1; Britten et al., 2004). Left: The cost function (averaged over
different partitioning positions). Right: Spike sequences sampled and the op-
timal Bar-PSTH for the first 1 [s] of the recording period 2 [s]. (A) The first 5
spike sequences. (B) The first 20 spike sequences that include 5 sequences of A.
(C) The complete 50 spike sequences that include 20 sequences of B.

For a small number of spike sequences derived from a modestly fluc-
tuating rate, the cost function does not have a minimum (Cn(T) < Cn(�)
for any � < T), or has a minimum at a bin size � that is comparable to
the observation period T , implying that the time-dependent rate cannot be
captured by means of the time histogram method. Our method can never-
theless extrapolate the cost function for any number of spike sequences and
suggest how many sequences should be added in order to obtain a mean-
ingful time histogram with the resolution we require. The model data and
real data illustrated that the optimal bin size may diverge (�∗ = O(T)), and
even under such conditions, our extrapolation method works reasonably
well.
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In this study, we adopted the mean integrated squared error (MISE) as
measuring the goodness of the fit of a PSTH to the underlying spike rate.
There were studies of the density estimation based on other standards such
as the Kullback-Leibler divergence (Hall, 1990) and the Hellinger distance
(Kanazawa, 1993). To our knowledge, however, there are yet no practical
algorithms based on these standards that optimize the bin size solely with
raw data. It is interesting to explore practical methods based on other stan-
dards to the estimation of the time-dependent rate and compare them with
the MISE criterion.

Use of regular (equal) bin size is a constraint particular to our method.
The regular histogram is suitable for stationary time-dependent rates. In
practical applications, however, the rate does not necessarily fluctuate in
a stationary fashion but can change abruptly during a localized period of
time. In such a situation, a histogram with variable bin width can better fit
the underlying rate than a regular histogram can. In order to make a better
estimate of the underlying rate in the sense of the MISE, it is desirable
to develop an adaptive method that adjusts the bin size over time. It is
also desirable to develop the optimization method for the Bar-PSTH and
the Line-PSTH into a method for higher-order spline fittings that can be
compared with filtering methods. Nevertheless, as long as the Bar-PSTHs or
the Line-PSTHs are used as conventional rate-estimation tools, our method
for selecting the bin size should be used for their construction.

Appendix: Optimization of the Line Graph Time Histogram

A line graph can be constructed by simply connecting top centers of ad-
jacent bar graphs of the height ki/(n�). Figure 7 schematically shows the
construction of a line graph time histogram. For the same set of spike se-
quences, the optimal bin size (window size) of a Line-PSTH is, however,
different from that of a Bar-PSTH. We develop here a method for selecting
the bin size for a Line-PSTH.

The expected heights of adjacent bar graphs for intervals of [−�, 0] and
[0,�] are

θ− ≡ 1
�

∫ 0

−�

λt dt,

θ+ ≡ 1
�

∫ �

0
λt dt.

The expected line graph Lt in an interval of [−�
2 , �

2 ] is a line connecting top
centers of these bar graphs,

Lt = θ+ + θ−

2
+ θ+ − θ−

�
t. (A.1)
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Figure 7: Line-PSTH. (A) An underlying spike rate, λt . The horizontal bars
indicate the original bar graphs θ− and θ+ for adjacent intervals [−�, 0] and
[0, �]. The expected line graph Lt is a line connecting the two top centers
of adjacent expected bar graphs (−�

2 , θ−) and ( �

2 , θ+). (B) Sequences of spikes
derived from the underlying rate. (C) A time histogram for the sample sequences
of spikes. The empirical line graph L̂ t is a line connecting the two top centers of
adjacent empirical bar graphs (−�

2 , θ̂−) and ( �

2 , θ̂+).

The unbiased estimators of the original bar graphs are θ̂− = k−/(n�) and
θ̂+ = k+/(n�), where k− and k+ are the numbers of spikes from n spike
sequences that enter the intervals [−�, 0] and [0,�], respectively. The em-
pirical line graph L̂ t in an interval of [−�

2 , �
2 ] is a line connecting two top

centers of adjacent empirical bar graphs,

L̂ t = θ̂+ + θ̂−

2
+ θ̂+ − θ̂−

�
t. (A.2)

A.1 Selection of the Bin Size. The time average of the MISE (see equa-
tion 2.1) is rewritten by the average over the N segmented rates,

MISE = 1
�

∫ �/2

−�/2

〈
E (L̂ t − λt)2〉 dt. (A.3)
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The MISE can be decomposed into two parts:

MISE = 1
�

∫ �/2

−�/2

〈
E(L̂ t − Lt)2〉 dt + 1

�

∫ �/2

−�/2

〈
(λt − Lt)2〉 dt. (A.4)

The first term of equation A.4 is the stochastic fluctuation of the em-
pirical linear estimator L̂ t due to the stochastic point events, which can be
computed as

1
�

∫ �/2

−�/2

〈
E(L̂ t − Lt)2〉 dt = 2

3

〈
E(θ̂+ − θ+)2〉 . (A.5)

Here we have used the relations, E(θ̂+ − θ+)(θ̂− − θ−) = 0 and〈
E(θ̂+ − θ+)2

〉 = 〈
E(θ̂− − θ−)2

〉
.

The second term of equation A.4 is the temporal fluctuation of λt around
the expected linear estimator Lt . We expand the second term by inserting
µ = 〈θ−〉 = 〈θ+〉 and obtain

1
�

∫ �/2

−�/2

〈
(λt − Lt)2〉 dt = 1

�

∫ �/2

−�/2

〈
(λt − µ)2〉dt

− 2
�

∫ �/2

−�/2
〈(λt − µ)(Lt − µ)〉dt

+ 1
�

∫ �/2

−�/2

〈
(Lt − µ)2〉dt

= 1
�

∫ �/2

−�/2

〈
(λt − µ)2〉dt

− {
2

〈(
θ+ − µ

) (
θ0 − µ

)〉 + 2
〈(
θ+ − µ

)
θ∗〉}

+
{

2
3

〈
(θ+ − µ)2〉 + 1

3

〈
(θ+ − µ)(θ− − µ)

〉}
, (A.6)

where

θ0 ≡ 1
�

∫ �/2

−�/2
λt dt,

θ∗ ≡ 2
�2

∫ �/2

−�/2
tλt dt.
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To obtain the above equation, we have used relations, 〈θ−〉 =
〈θ+〉 = 〈θ0〉 = µ, 〈θ∗〉 = 0, 〈(θ+ − µ)2〉 = 〈(θ− − µ)2〉, 〈(θ+ − µ)(θ0 − µ)〉 =
〈(θ− − µ)(θ0 − µ)〉, and 〈(θ+ − µ)θ∗〉 = −〈(θ− − µ)θ∗〉.

The first term of equation A.6 represents a mean squared fluctuation of
the underlying rate and is independent of the choice of the bin size � (see
equation 2.8). We introduce the cost function by subtracting the variance of
the underlying rate from the original MISE:

Cn (�) ≡ MISE − 1
T

∫ T

0
(λt − µ)2 dt

= 2
3

〈
E(θ̂+ − θ+)2〉 − 2

〈
(θ+ − µ)(θ0 − µ)

〉 − 2
〈
(θ+ − µ)θ∗〉

+2
3

〈
E(θ+ − µ)2〉 + 1

3

〈
(θ+ − µ)(θ− − µ)

〉
. (A.7)

The first term of equation A.7 can be estimated from the data, using the
variance-mean relation, equation 2.12. The last four terms of equation A.7
are the covariances of the expected rates θ−, θ+, θ0, and θ∗, which are not
observables. We can estimate them by using the covariance decomposition
rule for unbiased estimators:

〈(θ+ − 〈θ+〉)(θ p − 〈θ p〉)〉 = 〈E[(θ̂+ − 〈E θ̂+〉)(θ̂ p − 〈E θ̂ p〉)]〉
−〈E[(θ̂+ − θ+)(θ̂ p − θ p)]〉, (A.8)

where p denotes −,+, 0, or ∗. The first term of equation A.8 can be computed
directly from the data, using the relation 〈E θ̂−〉 = 〈E θ̂+〉 = 〈E θ̂0〉 = µ, and
〈E θ̂∗〉 = 0. Unlike the Bar-PSTH, however, the mean-variance relation for
the Poisson statistics is not directly applicable to the second term. We sug-
gest estimating these covariance terms from multiple sample sequences, as
in algorithm 3:

Algorithm 3: A Method for Bin Size Selection for a Line-PSTH

i. Divide the observation period T into N + 1 bins of width �.
Count the number of spikes ki ( j) that enter ith bin from j th sequence.
Define k(−)

i ( j) ≡ ki ( j) and k(+)
i ( j) ≡ ki+1( j) (i = 1, 2, . . . , N).

Divide the period [�/2, T − �/2] into N bins of width �.
Count the number of spikes k(0)

i ( j) that enter ith bin from j th se-
quence. In each bin, compute k(∗)

i ( j) ≡ 2
∑

	 t	
i ( j)/�, where t	

i ( j) is the
time of the 	th spike that enters the ith bin, measured from the center
of each bin.

ii. Sum up k(p)
i ( j) for all sequences: k(p)

i ≡ ∑n
j=1 k(p)

i ( j), where p =
{−,+, 0, ∗}.
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Average those spike counts with respect to all the bins: k̄(p) ≡
1
N

∑N
i=1 k(p)

i .
Compute covariances of k(+)

i and k(p)
i :

c(+, p) ≡ 1
N

N∑
i=1

(
k(+)

i − k̄(+)
) (

k(p)
i − k̄(p)

)
.

Compute covariances of k(+)
i ( j) and k(p)

i ( j) with respect to sequences
and average over time:

c̄(+, p) ≡ 1
N

N∑
i=1

1
n − 1

n∑
j=1

(
k(+)

i ( j) − k(+)
i

n

) (
k(p)

i ( j) − k(p)
i

n

)
.

Finally, compute

σ (+, p) ≡ c(+, p)

(n�)2 − c̄(+, p)

n�2 .

iii. Compute the cost function:

Cn(�) = 2
3

k̄(+)

(n�)2 − 2σ (+, 0) − 2σ (+, ∗) + 2
3
σ (+, +) + 1

3
σ (+, −).

iv. Repeat i through iii while changing � to search for �∗ that minimizes
Cn(�).

A.2 Extrapolation of the Cost Function. As in the case of the Bar-PSTH,
the cost function for any m sequences of spike trains can be extrapolated
using the variance-mean relation for the Poisson statistics,

Cm (�|n) = 2
3�

(
1
m

− 1
n

) 〈
E θ̂+

n

〉 + Cn (�) , (A.9)

where Cn (�) is the original cost function (see equation A.7). With the orig-
inal cost function Cn (�), we can easily estimate a cost function for m se-
quences with algorithm 4:
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Algorithm 4: A Method for Extrapolating the Cost Function for a
Line-PSTH

A. Construct the extrapolated cost function,

Cm (�|n) = 2
3

(
1
m

− 1
n

)
k̄(+)

n�2 + Cn(�),

where Cn(�) is the cost function for the line-graph time histogram
computed for n sequences of spikes with the algorithm 3.

B. Search for �∗
m that minimizes Cm (�|n).

C. Repeat A and B while changing m, and plot 1/�∗
m versus 1/m to

search for the critical value 1/m = 1/n̂c above which 1/�∗
m practically

vanishes.

A.3 Scaling Relations of the Optimal Bin Sizes. We can obtain a theo-
retical cost function of a Line-PSTH directly from the mean spike rate µ and
the correlation φ(t) of the rate fluctuation. According to the mean-variance
relation based on the Cramér-Rao (in)equality (see equation 2.21), the cost
function, equation A.7, is given by

Cn (�) = 2µ

3n�
− 2

�2

∫ �

0

∫ �/2

−�/2

(
1 + 2t2

�

)
φ (t1 − t2) dt1dt2

+ 2
3�2

∫ �

0

∫ �

0
φ (t1 − t2) dt1dt2 + 1

3�2

∫ �

0

∫ 0

−�

φ (t1 − t2) dt1dt2.

(A.10)

By expanding the correlation of the rate fluctuation,

φ (t) = φ (0) + φ′ (0+) |t| + 1
2
φ′′ (0) t2 + 1

6
φ′′′(0+) |t|3 + 1

24
φ′′′′(0) t4 + O

(|t|5),
we obtain

Cn(�) = 2µ

3n�
− φ (0) − 37

144
φ′ (0+) � + 181

5760
φ′′′ (0+) �3

+ 49
2880

φ′′′′ (0) �4 + O(�5). (A.11)

Unlike the Bar-PSTH, the line graph successfully approximates the original
rate to first order in �, and therefore the O(�2) term in the cost function
vanishes for a Line-PSTH.
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The optimal bin size �∗ is obtained from dCn (�) /d� = 0. For a rate
process that fluctuates smoothly in time, the correlation function is a smooth
function, resulting in φ′(0) = 0 and φ′′′(0) = 0 due to the symmetry φ(t) =
φ(−t), and we obtain the scaling relation

�∗ ∼
(

1280µ

181φ′′′′ (0) n

)1/5

. (A.12)

The exponent −1/5 for a Line-PSTH is different from the exponent −1/3 for
a Bar-PSTH (see equation 2.28).

If the correlation of rate fluctuation has a cusp at t = 0 (φ′(0+) < 0), we
obtain the scaling relation,

�∗ ∼
(

− 96µ

37φ′(0+)n

)1/2

, (A.13)

by ignoring the higher-order terms. The exponent −1/2 for a Line-PSTH is
the same as the exponent for a Bar-PSTH (see equation 2.29).
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