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Abstract

A histogram is a series of bar-graphs whose heights represent the num-
ber of events within class intervals called bins. In most literature, the
bin width that critically determines the goodness of the fit of the his-
togram to the underlying rate or density function has been selected by
an individual author in an unsystematic manner. The thesis proves, in
the Poisson point process framework, that the bin width of a histogram
can be selected as the one that minimizes the formula (2k-v)/widthˆ2,
where k and v are the mean and (biased) variance of the number of
data points in the bins.

The resolution of the histogram increases, or the optimal bin size
decreases, as the number of sampled data increases by repeating an
experimental trial. It is notable that the optimal bin size may diverge
if only a small number of experimental trials are available. In this case,
any attempt to characterize the underlying function by a histogram
will lead to a spurious result. Given a paucity of data, the thesis also
provides a method that suggests how many more trials are needed until
the set of data can be analyzed with the required resolution.
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Chapter 1

Introduction

We introduce the problem for selecting the bin size of a histogram. The
background and significance of the solutions proposed in this thesis will
be described. The theory and methods are also available as publications
elsewhere(Shimazaki & Shinomoto, 2007a, 2007b).

1.1 Optimal bin size of a histogram

A histogram is a series of bar-graphs whose heights represent the num-
ber of events within intervals (see an example on page 6). These inter-
vals, called bins or cells, are created by segmenting the data range of
interest. Because of its simplicity, a histogram method is recommended
by any elementary textbook of Statistics, and is used in scientific lit-
erature. A line-graph histogram is frequently used as well. In many
applications, a histogram is used to make an inference on the under-
lying function that generated the data, such as a rate function or a
probability density function.

When one wishes to estimate the underlying function by a his-
togram, the choice of the bin size critically determines the quality of the
inference. On the one hand, with a bin size that is too large, one cannot
represent details of the underlying function. On the other hand, with
a bin size that is too small, the histogram fluctuates greatly and one
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Figure 1.1: A frequency histogram for 272 observations on the duration
for eruptions of the Old Faithful geyser in Yellowstone National Park
(in minutes). The bin width of the histogram was obtained by the
method proposed by this thesis (in page 12).
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cannot discern the underlying function. For each set of data, there is
an appropriate bin size which needs to be chosen based on the goodness
of the fit of the histogram to the underlying function.

The most frequently used criteria to measure the goodness of the
fit of a histogram to the underlying function is the mean integrated
squared error (MISE),

MISE ≡
∫

Ef {f̂n (x)− f (x)}2 dx. (1.1)

Here f (x) is the underlying function, and f̂n (x) is a histogram con-
structed from the data of size n. Ef indicates expectation over an

ensemble of the histograms f̂n (x), given f (x). The thesis provides a
method to select a bin size that minimizes the MISE. The difficulty of
the present problem comes from the fact that the underlying function
f (x) is not known.

1.2 Background and significance of the pro-

posed methods

Theories on the optimal bin size of a histogram were mostly developed
in the framework of the density estimation (Izenman, 1991). There are
classical theories that treat how the optimal bin width scales with the
total number of data points n. It was proven that the optimal bin size
scales as n−1/3 with regard to the bar-graph density estimator (Révész,
1968; Scott, 1979). By using a Gaussian distribution as a reference,
Scott suggested to use the bin width of ∆∗ = 3.49 σ n−1/3, where σ is a
standard deviation of the samples. This approach is generally referred
to as a plug-in method. Some other extensions of Scott’s method can be
found in references (Freedman & Diaconis, 1981; Wand, 1997). There
are studies on an asymptotically optimal bin size of a histogram based
on other standards. Devroye and Gyröfi studied the mean integrated
absolute error (Devroye & Györfi, 1985). Kanazawa’s approach is based
on the Hellinger distance (Kanazawa, 1993). Yet other criteria are the
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Akaike’s Information Criterion (Taylor, 1987) and the Kullback-Leibler
divergence (Hall, 1990).

In the course of my graduate study, I became aware that an empir-
ical method for choosing a histogram bin width was first presented by
Rudemo in 1982 (Eq.2.8 in Scandinavian Journal of Statistics 9: 65-
78). His formula is not well known by rest of the statistical community,
and is often ignored in the review papers on the histogram bin width
selection. I will demonstrate in Appendix C.1 that, if the total number
of data points sampled by experiments is predetermined, our general
formula reproduces his result. I also constructed the method of bin size
selection for a line-graph histogram under this condition, which will be
described in Appendix C.2.

All the previous studies assume that the sample size of a histogram
can be strictly controlled: a preset number of samples are randomly
picked up from a population. In many practical situations, however, the
sample size is not precisely controlled by an experimentalist. Rather,
indeterminate number of samples is obtained under a carefully designed
experimental protocol with a predetermined time/space constraint. A
predominant, but not exclusive, example is the data of the timing of
event occurrence in a given observation period. It is thus preferable
to have a theory that accords with these experimental designs that
frequently appear in practice.

In this thesis, we provide a method for selecting a histogram bin
width for the data obtained through such experimental designs. The
method is applicable to selecting a size of a cell of a 2-dimensinal his-
togram as well. In addition to a bar-graph histogram, we also developed
a method for selecting the bin size of a line-graph histogram, which is
superior to a bar-graph in the goodness of the fit to the underlying
function.

When only a small number of experimental trials are available to
make a histogram, the estimated optimal bin size may become compa-
rable to the range of the sampled data, implying that by constructing
a histogram, it is likely that one obtains spurious results for the es-
timation (Koyama & Shinomoto, 2004). Because a shortage of data
underlies this divergence, one can carry out more experiments to ob-
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tain a reliable estimation. The thesis also provides the method that
can suggest how many more experimental trials should be performed
in order to obtain a meaningful histogram with the required accuracy.

It was pointed out by Koyama and Shinomoto (Koyama & Shi-
nomoto, 2004), and proved in general in Chapter 3, that the optimal
bin size scales differently depending on the smoothness of the under-
lying function. As an application of the proposed method, we also
show that the scaling relations of the optimal bin size that appears for
a large number of spike sequences can be examined from a relatively
small amount of data. The degree of the smoothness of an underlying
rate process can be estimated by this method. The naive assumptions
made on the underlying function should not be accepted uncritically
because it is often possible to examine them from the data.

The organization of the thesis is as follows.
In Chapter 2, we provide user-friendly recipes i) for selecting the

bin size of a histogram and ii) for estimating the minimum number of
experimental trials required for constructing a histogram.

In Chapter 3, theories behind i) the method of the bin size selection
and ii) the method for estimating the minimum number of experimental
trials required for constructing a histogram will be described. We also
derive the theoretical values of i) the minimum number of experimen-
tal trials required for constructing a histogram and ii) the asymptotic
optimal bin size for a large number of experimental trials.

In Chapter 4, the empirical methods for i) selecting the bin size,
ii) estimating the number of experimental trials required for histogram
construction, and iii) estimating the scaling exponents of the optimal
bin size are tested by comparing the results with those obtained by the
theoretical analysis.

In Appendix A, we generalize the theory developed in Chapter 3.
The method for selecting the bin size developed in this appendix is
applicable to a histogram with a dimension larger than one. In ad-
dition, it is applicable to selecting the bin size of a histogram which
is constructed to estimate any function related to the sampled point
events.

In Appendix B, we provide a theory and a recipe for creating a
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line-graph histogram. In addition, a theory and a recipe to estimate
the minimum number of experimental trials needed to construct a line-
graph histogram will be described.

In Appendix C, the method for selecting the bin size of a bar-graph
and a line-graph histogram constructed from a fixed number of samples
is described.
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Chapter 2

Methods

In this chapter, we provide a user-friendly recipe for selecting the bin
size of a bar-graph histogram of the data obtained by repeating an
identical experimental trial. We also provide the method to estimate
the minimum number of experimental trials required to construct a
bar-graph histogram. Recipes for a line-graph histogram are presented
in Appendix B.2.

2.1 Selection of the bin size

A bar-graph histogram is constructed simply by counting the number
of events that belong to each bin. We divide the data range of interest
into N intervals with each length given by ∆. The number of events
accumulated from all n repeated trials in the ith interval is counted as
ki.

The method to obtain an optimal bin size of a histogram is sum-
marized as ‘Algorithm 1’ on page 12. In this method, the cost function
is computed by using the mean and variance of event counts within
the bins with width ∆. The bin size that minimizes this cost function
should be selected.

In the same way as in a one-dimensional histogram, a bin size of
a d-dimensional histogram can be selected by following Algorithm 1.
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Algorithm1: Bin size selection for a bar-graph histogram

(i) Divide the data range of interest into N bins of size ∆†, and
count the number of events ki from all n repeated trials that
enter the ith bin.

(ii) Calculate the mean and variance of the number of events {ki}
as,

k ≡ 1

N

N∑
i=1

ki, and v ≡ 1

N

N∑
i=1

(ki − k)2.

(iii) Compute the cost function,

Cn(∆) =
2k − v

(n∆)2
.

(iv) Repeat i through iii while changing the bin size ∆. Find ∆∗

that minimizes Cn(∆).

† For a histogram with a dimension larger than one, ∆ is a volume of
a bin.
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In this case, the bin size ∆ is a volume of a d-dimensional cube. The
mean and variance are computed from the event counts in all the bins
that segment a total space. A d-dimensional histogram will be treated
in Appendix A.

We also constructed the method for selecting the bin size of a line-
graph histogram, which is summarized as ‘Algorithm 3’ in Appendix
B.2.

2.2 Extrapolation of the bin size

The number of experimental trials plays an important role in deter-
mining the resolution of the histogram. We propose the method which
can suggest how many more experimental trials should be performed
in order to construct a meaningful bar-graph histogram with the reso-
lution we deem sufficient. The method is summarized in Algorithm 2
on page 2.2. In this method, the cost function (in Algorithm 1) com-
puted to obtain the bin size of a histogram for the currently available
number of experimental trials is modified to construct a cost function
for any number of experimental trials. The bin size that minimizes this
‘extrapolated’ cost function is the estimated optimal bin size for the
desired number of experimental trials.

For a very small number of data, the optimal bin size may become
comparable to the observed data range. In this case, we propose to
construct the extrapolated cost functions for a larger number of ex-
perimental trials than the current number of trials. By examining the
bin sizes that minimize these extrapolated cost functions, one can find
the number of experimental trials above which the estimated bin sizes
become smaller than the observed data range. In this way, the method
summarized in Algorithm 2 could tell how many more experimental
trials should be performed to obtain a meaningful histogram.

The extrapolation method for a line-graph histogram is summarized
as ‘Algorithm 3’ in Appendix B.3.
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Algorithm2: Extrapolation method for a bar-graph histogram

A Construct the extrapolated cost function,

Cm (∆|n) =

(
1

m
− 1

n

)
k

n∆2
+ Cn(∆),

using the mean k and variance v of the number of events obtained
from n trials. Cn(∆) is the cost function computed for n trials
with the Method 1.

B Search for ∆∗
m that minimizes Cm (∆|n). ∆∗

m is the expected
optimal bin size for m trials.

C Repeat A and B while changing m, and plot 1/∆∗
m vs 1/m to

search for the critical value 1/m = 1/n̂c above which 1/∆∗
m prac-

tically vanishes.
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Chapter 3

Theory

In this chapter, we develop a theory on the optimal bin size of a his-
togram constructed from the data sampled from a Poisson point pro-
cess. If the data obtained by an experimental trial is mutually indepen-
dent, the sampling procedure is modeled by the inhomogeneous Pois-
son point process, which is the simplest point process in that the event
occurrence depends only on the instantaneous rate. Even if the data
obtained by an experimental trial is mutually dependent, as long as the
samples are obtained by repeating an identical trial, the accumulated
data are virtually independent, and obeys the inhomogeneous Poisson
point process due to a general limit theorem (Cox, 1962; Snyder, 1975;
Daley & Vere-Jones, 1988).

3.1 Construction of a bar-graph histogram

A bar-graph histogram is constructed simply by counting the number
of events that belong to each bin of width ∆. We divide the data range
T into N intervals with each length given by ∆ = T/N . The number
of events accumulated from all n sequences in the ith interval is counted
as ki. The bar height at the ith bin is given as ki/n∆. Figure 3.1 shows
the schematic diagram for the construction of a bar-graph histogram.

Given a bin of width ∆, the expected height of a bar graph for
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t ∈ [0, ∆] is the time-averaged rate,

θ =
1

∆

∫ ∆

0

λt dt. (3.1)

The total number of events k from n sequences that enter a bin of width
∆ obeys a Poisson distribution with the expected number n∆θ,

p(k |n∆θ) =
(n∆θ)k

k!
e−n∆θ . (3.2)

The unbiased estimator for θ is given as θ̂ = k/(n∆), which is the
empirical height of the bar graph for t ∈ [0, ∆].

3.2 Selection of the bin size

In this thesis, we assess the goodness of the fit of the estimator λ̂t to
the underlying rate λt over the data range T by the mean integrated
squared error (MISE),

MISE ≡ 1

T

∫ T

0

E (λ̂t − λt)
2 dt, (3.3)

where E refers to the expectation over different realization of point
events, given λt.

By segmenting the range T into N intervals of size ∆, the MISE
defined in Eq.(3.3) can be rewritten as

MISE =
1

∆

∫ ∆

0

1

N

N∑
i=1

E
{

θ̂ (i)−λt+(i−1)∆

}2

dt, (3.4)

where θ̂ (i) is an empirical height of a bar-graph histogram at ith bin.
Hereafter we denote the average over those segmented rate λt+(i−1)∆ as
an average over an ensemble of (segmented) rate functions {λt} defined
in an interval of t ∈ [0, ∆]:

MISE =
1

∆

∫ ∆

0

〈
E ( θ̂ − λt )2

〉
dt. (3.5)
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Figure 3.1: The bar–graph histogram. A: an underlying spike rate, λt.
The horizontal bars indicate the time averaged rates θ for individual
bins of width ∆. B: sequences of spikes derived from the underlying
rate. C: a time histogram for the sample sequences of spikes. The
estimated rate θ̂ is the total number of spikes k that entered each bin,
divided by the number of sequences n and the bin size ∆.

The expectation E now refers to the average over the event count,
or θ̂ = k/(n∆), given a rate function λt, or its mean value, θ. The
MISE can be decomposed into two parts,

MISE =
1

∆

∫ ∆

0

〈
E ( θ̂ − θ + θ − λt)

2
〉

dt

=
〈
E(θ̂ − θ)2

〉
+

1

∆

∫ ∆

0

〈
(λt − θ)2〉 dt. (3.6)

The first and second terms are respectively the stochastic fluctuation
of the estimator θ̂ around the expected mean rate θ, and the tempo-
ral fluctuation of λt around its mean θ over an interval of length ∆,
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averaged over the segments.
The second term of Eq.(3.5) can further be decomposed into two

parts,
1

∆

∫ ∆

0

〈
(λt − 〈θ〉)2〉 dt− 〈

(θ − 〈θ〉)2〉 . (3.7)

The first term in the rhs of Eq.(3.7) represents a mean squared fluctua-
tion of the underlying rate λt from the mean rate 〈θ〉, and is independent
of the bin size ∆, because

1

∆

∫ ∆

0

〈
(λt − 〈θ〉)2〉 dt =

1

T

∫ T

0

(λt − 〈θ〉)2 dt. (3.8)

We define a cost function by subtracting this term from the original
MISE,

C
′
n(∆) ≡ MISE− 1

T

∫ T

0

(λt − 〈θ〉)2 dt

=
〈
E(θ̂ − θ)2

〉
− 〈

(θ − 〈θ〉)2〉 . (3.9)

The second term in Eq.(3.9) represents the temporal fluctuation of
the expected mean rate θ for individual intervals of width ∆. As the
expected mean rate is not an observable quantity, we must replace
the fluctuation of the expected mean rate with that of the observable
estimator θ̂. Using the decomposition rule for an unbiased estimator
(Eθ̂ = θ),〈

E(θ̂ − 〈Eθ̂〉)2
〉

=
〈
E(θ̂ − θ + θ − 〈θ〉)2

〉

=
〈
E(θ̂ − θ)2

〉
+

〈
(θ − 〈θ〉)2〉 , (3.10)

the cost function is transformed into

Cn (∆) = 2
〈
E(θ̂ − θ)2

〉
− E

〈
(θ̂ − 〈Eθ̂〉)2

〉
. (3.11)

The second term can be taken apart into two parts,〈
E(θ̂ − 〈Eθ̂〉)2

〉
= E

〈
(θ̂ − 〈θ̂〉+ 〈θ̂〉 − 〈Eθ̂〉)2

〉

= E
〈
(θ̂ − 〈θ̂〉)2

〉
+ E(〈θ̂〉 − 〈Eθ̂〉)2 (3.12)
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The second term of this equation is not dependent on the choice of the
bin size. Therefore, we add this term to the cost function C

′
n (∆), and

redefine the cost function as

Cn (∆) = C
′
n (∆) + E(〈θ̂〉 − 〈Eθ̂〉)2

= 2
〈
E(θ̂ − θ)2

〉
− E

〈
(θ̂ − 〈θ̂〉)2

〉
. (3.13)

Due to the assumed Poisson nature of the point process, the num-
ber of events k counted in each bin obeys a Poisson distribution: the
variance of k is equal to the mean. For the estimated rate defined as
θ̂ = k/(n∆), this variance-mean relation corresponds to

E(θ̂ − θ)2 =
1

n∆
Eθ̂. (3.14)

By incorporating Eq.(3.14) into Eq.(3.13), the cost function is given as
a function of the estimator θ̂,

Cn (∆) =
2

n∆
E

〈
θ̂
〉
− E

〈
(θ̂ − 〈θ̂〉)2

〉
. (3.15)

Therefore, the cost function can be estimated by using the mean and
variance of a sample histogram,

Cn (∆) =
2

n∆

〈
θ̂
〉
−

〈
(θ̂ − 〈θ̂〉)2

〉
. (3.16)

The optimal bin size is obtained by minimizing the cost function Cn(∆):

∆∗ ≡ arg min
∆

Cn(∆). (3.17)

By replacing θ̂ in Eq.(3.16) with the sample event counts, the method
is converted into a user-friendly recipe summarized in Algorithm 1.

3.3 Extrapolation of the bin size

With the method developed in the preceding subsection, we can de-
termine the optimal bin size for a given set of experimental data. In
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this section, we develop a method to estimate how the optimal bin size
decreases when more experimental trials are added to the data set.

Assume that we are in possession of n event sequences. The fluctua-
tion of the expected mean rate 〈(θ − 〈θ〉)2〉 in Eq.(3.9) is replaced with
the empirical fluctuation of the histogram θ̂n using the decomposition
rule for the unbiased estimator θ̂n satisfying Eθ̂n = θ,

〈
E(θ̂n − 〈Eθ̂n〉)2

〉
=

〈
E(θ̂n − θ + θ − 〈θ〉)2

〉

=
〈
E(θ̂n − θ)2

〉
+

〈
(θ − 〈θ〉)2

〉
.

The expected cost function C ′
m (∆) for m sequences can be obtained by

substituting the above equation into Eq.(3.9), yielding

C ′
m (∆) =

〈
E(θ̂m − θ)2

〉
+

〈
E(θ̂n − θ)2

〉
−

〈
E(θ̂n − 〈Eθ̂n〉)2

〉

=
〈
E(θ̂m − θ)2

〉
−

〈
E(θ̂n − θ)2

〉
+ C ′

n (∆) . (3.18)

where Cn (∆) is the original cost function, Eq.(3.16), computed us-
ing the estimators θ̂n. We then obtain the extrapolated cost function
Cm (∆) given n sequences as

Cm (∆|n) =
〈
E(θ̂m − θ)2

〉
−

〈
E(θ̂n − θ)2

〉
+ Cn (∆) . (3.19)

Here the bias term in Eq. 3.12, which is not related to the choice of bin
size, was eliminated. Using the variance-mean relation for the Poisson
distribution, Eq.(3.14), and

E(θ̂m − θ)2 =
1

m∆
Eθ̂m =

1

m∆
Eθ̂n, (3.20)

we obtain

Cm (∆|n) =

(
1

m
− 1

n

)
1

∆

〈
Eθ̂n

〉
+ Cn (∆) . (3.21)

By replacing the expectation with sample event count averages, the
cost function for m sequences can be extrapolated as Cm (∆|n) with
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this formula, using the sample mean k and variance v of the numbers
of events, given n sequences and the bin size ∆. The extrapolation
method is summarized in Table 2.

It may come to pass that the original cost function Cn(∆) computed
for n event sequences does not have a minimum, or have a minimum
at a bin size comparable to the observed data range T . In such a
case, with the method summarized in Table 2, one may estimate the
critical number of sequences nc above which the cost function has a
finite bin size ∆∗, and consider carrying out more experiments to obtain
a reasonable rate estimation. In the case that the optimal bin size
exhibits continuous divergence, the cost function can be expanded as

Cn(∆) ∼ µ

(
1

n
− 1

nc

)
1

∆
+ u

1

∆2
, (3.22)

where we have introduced nc and u, which are independent of n. The
optimal bin size undergoes a phase transition from the vanishing 1/∆∗

for n < nc to a finite 1/∆∗ for n > nc. In this case, the inverse optimal
bin size is expanded in the vicinity of nc as 1/∆∗ ∝ (1/n− 1/nc). We
can estimate the critical value n̂c by applying this asymptotic relation
to the set of ∆̂∗

m estimated from Cm(∆|n) for various values of m:

1

∆∗
m

∝
(

1

m
− 1

n̂c

)
. (3.23)

It should be noted that there are cases that the optimal bin size ex-
hibits discontinuous divergence from a finite value. Even in such cases,
the plot of {1/m, 1/∆∗} could be useful in exploring a discontinuous
transition from nonvanishing values of 1/∆∗ to practically vanishing
values.

3.4 Theoretical cost function

In this section, we obtain a “theoretical” cost function directly from a
process with a known underlying rate, λt. Note that this theoretical
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cost function is not available in real experimental conditions in which
the underlying rate is not known.

The present estimator θ̂ ≡ k/(n∆) is a uniformly minimum variance
unbiased estimator (UMVUE) of θ, which achieves the lower bound of
the Cramér-Rao inequality (Blahut, 1987; Cover & Thomas, 1991),

E(θ̂ − θ)2 =

[
−

∞∑

k=0

p (k |n∆θ)
∂2 log p (k |n∆θ)

∂θ2

]−1

=
θ

n∆
. (3.24)

Inserting this into Eq. 3.9, the cost function is represented as

Cn (∆) =
〈θ〉
n∆

− 〈
(θ − 〈θ〉)2〉

=
µ

n∆
− 1

∆2

∫ ∆

0

∫ ∆

0

φ (t1 − t2) dt1dt2, (3.25)

where µ = 〈θ〉 is the mean rate, and φ(t1− t2) = 〈(λt1 − µ)(λt2 − µ)〉 is
the autocorrelation function of the rate fluctuation, λt − µ.

3.4.1 Divergence of the optimal bin size

We obtain analytical solution of the critical number nc, below which
the optimal bin size that minimizes the cost function diverges. The
cost function with a large bin size can be rewritten as

Cn (∆) =
µ

n∆
− 1

∆2

∫ ∆

−∆

(∆− |t|)φ(t) dt

∼ µ

n∆
− 1

∆

∫ ∞

−∞
φ(t) dt +

1

∆2

∫ ∞

−∞
|t|φ(t) dt, (3.26)

based on the symmetry φ(t) = φ(−t) for a stationary process. Eq. 3.26
can be identified with Eq. 3.22 with parameters

nc = µ

/∫ ∞

−∞
φ(t) dt , (3.27)

u =

∫ ∞

−∞
|t|φ(t) dt. (3.28)
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The minimum number of repeated trials required for the construction
of a histogram is given by dnce. For the process giving the correlation of
the form φ (t) = σ2e−|t|/τ and the process giving a Gaussian correlation
φ(t) = σ2e−t2/τ2

, the critical numbers are obtained as nc = µ/2σ2τ
and nc = µ/σ2τ

√
π, respectively.

Note that the expansion of the cost function with respect to 1/∆
assumes that the optimal bin size takes an infinitely large value at the
onset of the transition. However, the finite optimal bin size may appear
suddenly as we increase the number of trials. The transitions of the
optimal bin width from infinite to finite length can be systematically
examined by considering Fourier domain of the cost function.

The Fourier transform of the window function, whose height is 1/∆
within the window of width ∆ and zero outside the window, is a sinc
function given by

H∆(ω) =

∫ ∆/2

−∆/2

1

∆
e−jωt dt =

sin(ω∆/2)

ω∆/2
. (3.29)

Let the Fourier transform of the correlation φ(t) be Φ(ω) (the power
spectrum of the rate process). Using H∆(ω) and Φ(ω), the cost function
Eq. 3.25 is written as

Cn(∆) =
1

2π

∫ ∞

−∞
H∆(ω)2

{µ

n
− Φ(ω)

}
dω. (3.30)

The cost function vanishes for the large bin size: lim∆→∞ Cn (∆) = 0.
Therefore, if the finite optimal bin size ∆∗ exists, it should satisfy
Cn (∆∗) < 0.

We first examine the cost function of the stochastic processes whose
power spectrum has a maximum at origin (Φ(0) > Φ(ω) for ω 6= 0).
For a small number of sequences that satisfies µ/n > Φ(0), the cost
function is positive for all ∆. Therefore the optimal bin size diverges
if n < µ /Φ(0). The critical number of trial is then given by nc =
µ /Φ(0), which is identical to Eq.3.27. To examine the condition near
the transition point, suppose that n is slightly larger than nc. The term
µ/n− Φ(ω) in the integral of Eq.3.30 is negative in the vicinity of the
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Figure 3.2: The first and the second order phase transitions observed for
optimal bin sizes with two different rate processes. (Left; A, B, C) a pro-
cess whose mean is µ = 30 and correlation function is φ(t) = σ2e−t2/τ2

(σ2 = 9, τ = 0.1) (Right; D, E, F) a process whose mean is µ = 30 and
correlation function is φ(t) = σ2(1 − |t|/τ)e−|t|/τ (σ2 = 25, τ = 0.1).
(Top; A, D) Power spectra of the rate process. (Middle; B, E) The-
oretical cost functions derived from Eq.3.25 (B n = 10, 40,and 100; E
n = 10, 20,and 30). The asterisks indicate optimal bin sizes (Bottom,
CF) The inverse of optimal bin sizes as a function of the inverse of n.
The dots represent the optimal bin sizes for integer n.
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origin and positive elsewhere. As the bin size ∆ increases, the spectra
of H∆(ω)2 vanish except for the origin whose height is kept constant as
1. Therefore the narrow negative spectrum range of µ/n−Φ(ω) can be
exploited by H∆(ω)2 with a large bin size: An appropriately large bin
size yields the negative cost function. This indicates that the optimal
bin size appears as an infinitely large ∆. This type of phase transitions
is called the second order (continuous) phase transitions. For exam-
ple, a process with a Gaussian correlation function (φ(t) = σ2e−t2/τ2

)
displayed in Fig. 3.4.1A exhibit the second order phase transition.

For the stochastic processes whose power spectrum has a maximum
other than origin, it is possible that the first order (discontinuous) phase
transitions take place. Figure 3.4.1A displays the power spectrum of
the process with a correlation function φ(t) = σ2(1− |t|/τ)e−|t|/τ . This
process has a negative correlation for |t| > τ , and the power spectrum at
origin is not a maximum. The cost function analytically obtained from
Eq. 3.30 (Figure 3.4.1E) reveals that, when the number of sequences is
increased, two local minima appear (one at origin and the other at a
finite bin size). The optimal bin size undergoes a discontinuos phase
transition as shown in Figure 3.4.1F. The example is an extreme case,
where the first order phase transition always occur because Φ(0) = 0.
It should be noted that even if the power spectrum has a maximum
other than origin, the second order phase transition could take place,
too.

3.4.2 Scaling of the optimal bin size

Based on the same theoretical cost function Eq. 3.25, we can also derive
scaling relations of the optimal bin size, which is achievable with a large
number of event sequences. With a small ∆, the correlation of rate
fluctuation φ(t) can be expanded as

φ (t) = φ (0) + φ′ (0+) |t|+ 1

2
φ′′ (0) t2 + O

(|t|3) ,

and we obtain an expansion of Eq. 3.25 with respect to ∆,

Cn(∆) =
µ

n∆
− φ (0)− 1

3
φ′ (0+) ∆− 1

12
φ′′ (0) ∆2 + O(∆3). (3.31)
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The optimal bin size ∆∗ is obtained from dCn (∆) /d∆ = 0. For
a rate that fluctuates smoothly in time, the correlation function is a
smooth function of t, resulting in φ′(0) = 0 due to the symmetry φ(t) =
φ(−t). In this case, we obtain the scaling relation

∆∗ ∼
(
− 6µ

φ′′ (0) n

)1/3

. (3.32)

For a rate that fluctuates in a zigzag pattern, in which the correla-
tion of rate fluctuation has a cusp at t = 0 (φ′(0+) < 0), we obtain the
scaling relation

∆∗ ∼
(
− 3µ

φ′(0+)n

)1/2

, (3.33)

by ignoring the second order term in Eq.3.31. Examples that exhibit
this type of scaling are the Ornstein-Uhlenbeck process and the random
telegraph process (Kubo & Hashitsume, 1985; Gardiner, 1985).
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Chapter 4

Results

In this chapter, we apply the presently developed methods for the bar-
graph histogram and the line-graph histogram to sequences of events
generated by the simulations of inhomogeneous Poisson point processes.

4.1 Selection of the bin size

We applied the method for estimating the optimal bin size of a bar-
graph histogram to a set of event sequences derived from an inhomo-
geneous Poisson process. The rate of the Poisson point process used
in the simulation is a stationary stochastic process. Figure 4.1A shows
the ‘empirical’ cost function Cn(∆) computed from a set of n event
sequences according to Algorithm 2.1. The empirical cost function
approximates the ‘theoretical’ cost function for the rate process, ac-
cording to Eq. 3.25 in Section 3. In Figure 4.1D, a histogram with
the optimal bin size is compared with those with non-optimal bin sizes,
demonstrating the effectiveness of optimizing the bin size. We also con-
structed a method for selecting bin size of a line-graph histogram, which
is summarized as ‘Algorithm 3’ in Appendix B.2. A line graph can be
constructed by simply connecting top-centers of adjacent bar graphs.
Figure 4.2 compares the optimal bar-graph histogram and the optimal
line-graph histogram, obtained from the same set of event sequences,

27



0

120

0

0

60

B

C

D

0

^

^

^

60

60

Time, t

Underlying rate

0 1 2 3

0 1 2 3

0 1 2 3

-100

0

100

A
Cost function for the Bar-PSTH

0 0.1 0.2 0.3 0.4 0.5

Empirical cost function
Theoretical cost function

Figure 4.1: Construction of the optimal bar-graph histogram from point
events. A: (Dots): an ‘empirical’ cost function, Cn(∆), computed from
the data according to the Algorithm 1. Here, 50 sequences of events
for an interval of 20 are derived from an inhomogeneous Poisson pro-
cess characterized by the mean rate µ and the correlation of the rate
fluctuation φ(t) = σ2e−t2/τ2

, with µ = 30, σ = 10, and τ = 0.1. (Solid
line): the ‘theoretical’ cost function computed directly from the under-
lying fluctuating rate using Eq. 3.25. B: the underlying fluctuating rate
λt. C: event sequences derived from the rate. D: bar-graph histograms
made using three types of bin sizes: too small, optimal, and too large.
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demonstrating the superiority of the line-graph histogram to the bar-
graph histogram in the sense of the MISE. In addition, the line-graph
histogram is suitable for the comparison of multiple rates, as is the case
for filtering methods.

4.2 Extrapolation of the bin size

The optimal bin size for the number of experimental trials m can be
estimated from the currently available data of size n by minimizing
the extrapolated cost function in the Algorithm 2. In this method,
the cost function of m sequences is obtained by modifying the original
cost function, Cn (∆), computed from the event count statistics of n
sequences of events.

4.2.1 Divergence of the optimal bin size

For a small number of sampled data, the estimated optimal bin size
may diverge, implying that by constructing a histogram, it is likely
that one obtains spurious results for the estimation (Koyama & Shi-
nomoto, 2004). Because a shortage of data underlies this divergence,
one can carry out more experiments to obtain a reliable estimation.
With the Algorithm 2, one can estimate how many more experimental
trials should be performed in order to construct a meaningful bar-graph
histogram.

We applied this extrapolation method for a bar-graph histogram to
a set of event sequences derived from the smoothly regulated Poisson
process. Figure 4.3A depicts the extrapolated cost function Cm (∆|n)
for several values of m, computed from a given set of n(= 30) event
sequences. Figure 4.3B represents the dependence of an inverse optimal
bin size 1/∆∗

m on 1/m. The inverse optimal bin size, 1/∆∗
m, stays near

0 for 1/m > 1/n̂c, and departs from 0 linearly with m for 1/m ≤
1/ n̂c. By fitting the linear function, we estimated the critical number
of sequences n̂c. In Figure 4.3C, the critical number of sequences n̂c

estimated from a smaller or larger n is compared to the theoretical value
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Figure 4.2: The comparison of the optimal bar-graph histogram and
the optimal line-graph histogram. The data of the point events are the
same as the data used in Fig. 4.1. A: the optimal bar-graph histogram
constructed from the event sequences derived from an underlying fluc-
tuating rate process (dashed line). B: the optimal line-graph histogram
constructed from the same set of event sequences.
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Figure 4.3: The extrapolation method. A: extrapolated cost functions
Cm (∆|n) of a bar-graph histogram for several values of m, computed
from 30 sequences of events derived from a Poisson process character-
ized by the mean rate µ and the correlation of the rate fluctuation
φ(t) = σ2e−t2/τ2

, with µ = 30, σ = 2, and τ = 0.1. The modestly fluc-
tuating rate with σ = 2 is used as compared with the rate with σ = 10
used in Fig. 1. B: the inverse optimal bin size 1/∆∗

m plotted against
1/m. A solid line is a linear function fitted to the data. C: the critical
number of sequences n̂c extrapolated from a smaller or larger number
of event sequences. The horizontal axis represents the number of event
sequences n used to obtain the extrapolated cost function Cm (∆|n).
The vertical axis represents an extrapolated critical number n̂c. The
dashed lines represent a theoretical value nc computed using Eq. 3.27,
and a diagonal.

31



of nc computed from Eq. 3.27. It is noteworthy that the estimated n̂c

approximates the theoretical nc well even from a fairly small number
of event sequences, with which the estimated optimal bin size diverges.

4.2.2 Scaling of the optimal bin size

With the extrapolation method for a bar-graph histogram (Algorithm
2), one can also estimate how much the optimal bin size decreases (i.e.,
the resolution increases) with the number of event sequences.

Figure 4.2.2A shows log-log plots of the optimal bin sizes ∆∗
m versus

m with respect to two rate processes that fluctuate either smoothly or
in a zigzag pattern. These plots exhibit power-law scaling relations
with distinctly different scaling exponents. The estimated exponents
(−0.34 ± 0.04 for the smooth rate process and −0.56 ± 0.04 for the
zigzag rate process) are close to the exponents of m−1/3 and m−1/2 that
were obtained analytically as in Eqs. 3.32 and 3.33. In this way, we
can estimate the degree of smoothness of the underlying rate from a
reasonable amount of data.

With the extrapolation method for a line-graph histogram (Algo-
rithm 4 in Appendix B.3), the scaling relations for a line-graph his-
togram can be examined in a similar manner. Figure 4.2.2B represents
the optimal bin sizes computed for two rate processes that either fluc-
tuate smoothly or in a zigzag pattern. The estimated exponents are
−0.24±0.04 for the smooth rate process and −0.50±0.05 for the zigzag
rate process. The exponents obtained by the extrapolation method are
similar to the analytically obtained exponents, m−1/5 and m−1/2 respec-
tively (see Eqs. B.15 and B.16). Note that for the smoothly fluctuating
rate process, the scaling relation for the line-graph histogram is m−1/5,
whereas the scaling relation for a bar-graph histogram is m−1/3. In
contrast, for the rate process that fluctuates jaggedly, the exponents of
the scaling relations for both a bar-graph histogram and a line-graph
histogram are m−1/2.
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Figure 4.4: Scaling relations for the bar-graph histogram and the line-
graph histogram. The optimal bin sizes ∆∗

m are estimated from the
extrapolated cost function Cm (∆|n), computed from 100 sequences
of spikes. The optimal bin sizes ∆∗

m versus m is shown in log-log
scale. Two types of rate processes were examined; one that fluctuates
smoothly, which is characterized by the correlation of the rate fluctua-
tion φ (t) = σ2e−t2/τ2

, and the other that fluctuates jaggedly, which is
characterized by the correlation of the rate fluctuation φ (t) = σ2e−|t|/τ .
The parameter values are the same as the ones used in Fig. 4.1. A:
log-log plots of the optimal bin size with respect to m for a bar-graph
histogram. Lines are fitted to the data in an interval of m ∈ [50, 500],
whose regression coefficients, −0.34±0.04 and −0.56±0.04, correspond
to the scaling exponents for a bar-graph histogram. B: log-log plots of
the optimal bin size with respect to m for a line-graph histogram. Lines
are fitted to the data in an interval of m ∈ [50, 500], whose regression
coefficients, −0.24 ± 0.04 and −0.50 ± 0.05, correspond to the scaling
exponents for a line-graph histogram.
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Appendix A

A d-Dimensional Histogram

In this Appendix, we generalize the method for selecting the bin size
of a histogram developed in Chapter 3. In Appendix A.1, we re-derive
the cost function so that the formula is applicable to selecting the bin
size of a histogram of d-dimension, where d is positive integer. In addi-
tion, the cost function derived in this appendix is generally applicable
to a histogram that depicts the function related to point events. In
Appendix A.2, we explicitly derive the cost function for a histogram
for density estimation.

A.1 Derivation of the cost function

For a histogram of a multivariate datasets x, MISE is defined by mul-
tiple integral:

MISE =
1

|V |
∫

V

E
{

f̂ (x)− f (x)
}2

dx. (A.1)

where V is the d-dimensional data space of interest and |V | is its vol-
ume. The average value of a function f (x) in the ith bin is given
by

f̄i =
1

∆i

∫

Vi

f (x) dx.
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where Vi represents the space of ith bin, and ∆i is the volume of the
ith bin (∆i = |Vi|). As is in one dimensional histogram, we divided the

multiple integral into the N segmented bins:

MISE =
1

|V |
∫

V

Ef

{
f̂(x)− f (x)

}2

dx (A.2)

=
1

N

N∑
i=1

1

∆i

∫

Vi

Efi

{
f̂i−f (x)

}2

dx.

By denoting the average over bins with a bracket, we rewrite MISE as

MISE =

〈
1

∆i

∫

Vi

Efi

{
f̂i−f (x)

}2

dx

〉
. (A.3)

By inserting the ideal model f̄i, the MISE is decomposed into two parts,

MISE =

〈
1

∆i

∫

Vi

Efi

{
f̂i−f̄ i+f̄ i−f (x)

}2

dx

〉
(A.4)

=

〈
Efi

(
f̂i − f̄i

)2
〉

+

〈
1

∆i

∫

Vi

{
f (x)−f̄ i

}2
dx

〉
.

By inserting the total average µ = 1
V

∫
V

f (x)dx, the second term can
be further decomposed into two,
〈

1

∆i

∫

Vi

{
f (x)−f̄ i

}2
dx

〉
=

〈
1

∆i

∫

Vi

{f (x)− µ}2 dx

〉
−

〈
1

∆i

∫

Vi

{
f̄i−µ

}2
dx

〉

=
1

|V |
∫

V

{f (x)− µ}2 dx−
〈(

f̄i−µ
)2

〉
.

(A.5)

where the first term is irrespective of the choice of the bin size. We
thus introduce the cost function,

C ′ ({∆i}) = MISE− 1

|V |
∫

V

{f (x)− µ}2 dx

=
〈
Efi

(f̂i − f̄i)
2
〉
−

〈(
f̄i−µ

)2
〉

. (A.6)
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From the decomposition rule, we have

〈
Efi

(f̂i −
〈
Efi

f̂i

〉
)2

〉
=

〈
Efi

(f̂i − f̄i)
2
〉

+
〈
Efi

(
f̄i−

〈
f̄i

〉)2
〉

. (A.7)

By substituting this equation, the cost function becomes

C ({∆i}) = 2

〈
Efi

(
f̂i − f̄

)2
〉
−Ef

〈(
f̂i −

〈
Ef̂i

〉)2
〉

. (A.8)

The second term is written as

Ef

〈(
f̂i −

〈
Efi

f̂i

〉)2
〉

= Ef

〈(
f̂i −

〈
f̂i

〉)2
〉

+Ef

〈(〈
f̂i

〉
−

〈
Efi

f̂i

〉)2
〉

.

(A.9)
The second term of the above equation does not depend on the choice
of the bin size ∆. We add this term to the cost function, and redefine
the cost function as

C ({∆i}) = C ′ ({∆i}) + Ef

〈(〈
f̂i

〉
−

〈
Efi

f̂i

〉)2
〉

= 2

〈
Efi

(
f̂i − f̄

)2
〉
−Ef

〈(
f̂i −

〈
f̂i

〉)2
〉

. (A.10)

Note that throughout the derivation of the cost function, we only
assumed that each height of the histogram is unbiased estimator of the
average of the underlying function in the bin. The cost function given
by A.10 is applicable to not only obtaining the bin size of histogram
for a density (or rate) estimation, but also obtaining the bin size of
a histogram that depicts the function related to a point process, such
as an auto-correlation function of the underlying rate. When the ex-
perimental trials are repeated to obtain the data, the first term can be
evaluated as the variance of the histograms constructed from individual
trials.
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A.2 Selection of the bin size for a Poisson

process

For a rate estimation of a Poisson point process, the bar-height is de-
fined as

f̂i = θ̂i =
ki

n∆i

, (A.11)

where n is the number of repeated trials. The number of events ki in
the volume Vi follows a Poisson distribution (Diggle, 1983) with mean,

n

∫

Vi

f (x) dx =n∆fi. (A.12)

Since the mean and variance of the Poisson point process equals, we
have 〈

E
(
f̂i − f̄i

)2
〉

=

〈
1

n∆i

Ef̂i

〉
. (A.13)

The cost function is then written as

Cn ({∆i}) =
2

n
Ef

〈
1

∆i

f̂i

〉
−Ef

〈(
f̂i −

〈
f̂i

〉)2
〉

. (A.14)

By replacing the expectation by one sample histogram, we obtain

Cn ({∆i}) =
2

n2

〈
1

∆2
i

ki

〉
− 1

n2

〈(
ki

∆i

−
〈

ki

∆i

〉)2
〉

.

For a regular histogram, whose volume is equal in all bins, we have

Cn (∆) =
1

n2∆2

{
2 〈ki〉 −

〈
(ki − 〈ki〉)2〉} .
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Appendix B

A Line-Graph Histogram

In this Appendix, we provide a thoery and a recipe for i) selecting the
bin size of a line-graph histogram and ii) estimating required number
of experimental trials to construct a line-graph histogram.

B.1 Construction of a line-graph histogram

A line graph can be constructed by simply connecting top-centers of
adjacent bar graphs of the height ki/(n∆). Figure B.1 schematically
shows the construction of a line-graph histogram. For the same set
of event sequences, the optimal bin size (window size) of a line-graph
histogram is, however, different from that of a bar-graph histogram.
We develop here a method for selecting the bin size for a line-graph
histogram.

The expected heights of adjacent bar graphs for intervals of [−∆, 0]
and [0, ∆] are

θ− ≡ 1

∆

∫ 0

−∆

λt dt,

θ+ ≡ 1

∆

∫ ∆

0

λt dt.
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Figure B.1: The line-graph histogram. A: an underlying rate, λt. The
horizontal bars indicate the original bar graphs θ− and θ+ for adjacent
intervals [−∆, 0] and [0, ∆]. The expected line graph Lt is a line con-
necting the two top-centers of adjacent expected bar graphs (−∆

2
, θ−)

and (∆
2
, θ+). B: sequences of events derived from the underlying rate.

C: a line-graph histogram for the sample sequences of events. The em-
pirical line graph L̂t is a line connecting the two top-centers of adjacent
empirical bar graphs (−∆

2
, θ̂−) and (∆

2
, θ̂+).
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The expected line graph Lt in an interval of [−∆
2
, ∆

2
] is a line connecting

top-centers of these bar graphs,

Lt =
θ+ + θ−

2
+

θ+ − θ−

∆
t. (B.1)

The unbiased estimators of the original bar graphs are θ̂− = k−/(n∆)
and θ̂+ = k+/(n∆), where k− and k+ are the numbers of events from n
event sequences that enter the intervals [−∆, 0] and [0, ∆], respectively.
The empirical line graph L̂t in an interval of [−∆

2
, ∆

2
] is a line connecting

two top-centers of adjacent empirical bar graphs,

L̂t =
θ̂+ + θ̂−

2
+

θ̂+ − θ̂−

∆
t. (B.2)

B.2 Selection of the bin size

The time average of the MISE (Eq. 3.3) is rewritten by the average
over the N segmented rates,

MISE =
1

∆

∫ ∆/2

−∆/2

〈
E (L̂t − λt)

2
〉

dt. (B.3)

The MISE can be decomposed into two parts,

MISE =
1

∆

∫ ∆/2

−∆/2

〈
E(L̂t − Lt)

2
〉

dt +
1

∆

∫ ∆/2

−∆/2

〈
(λt − Lt)

2〉 dt. (B.4)

The first term of Eq. B.4 is the stochastic fluctuation of the empirical
linear estimator L̂t due to the stochastic point events, which can be
computed as

1

∆

∫ ∆/2

−∆/2

〈
E(L̂t − Lt)

2
〉

dt

=
1

3

〈
E(θ̂+ − θ+)2

〉
+

1

3

〈
E(θ̂− − θ−)2

〉
. (B.5)
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Here we have used the relations, E(θ̂+ − θ+)(θ̂− − θ−) = 0.
The second term of Eq. B.4 is the temporal fluctuation of λt around

the expected linear estimator Lt. We expands the second term by
inserting µ = 〈θ−〉 = 〈θ+〉 = 〈θ0〉, and obtain

1

∆

∫ ∆/2

−∆/2

〈
(λt − Lt)

2〉 dt =
1

∆

∫ ∆/2

−∆/2

〈
(λt−µ)2〉 dt (B.6)

− 2

∆

∫ ∆/2

−∆/2

〈(λt−µ) (Lt−µ)〉 dt (B.7)

+
1

∆

∫ ∆/2

−∆/2

〈
(Lt−µ)2〉 dt (B.8)

The second term B.7 is computed as

(B.7) =
〈(

θ+−µ
) (

θ0−µ
)〉

+
〈(

θ− − µ
) (

θ0 − µ
)〉

+
〈(

θ+−µ
)
θ∗

〉− 〈(
θ−−µ

)
θ∗

〉
,

where

θ0 ≡ 1

∆

∫ ∆/2

−∆/2

λt dt,

θ∗ ≡ 2

∆2

∫ ∆/2

−∆/2

tλt dt.

To obtain the above equation, we have used relations, 〈θ−〉 = 〈θ+〉 =
〈θ0〉 = µ. The third term B.8 can be computed as

(B.8) =
1

3

〈(
θ+ − µ

)2
〉

+
1

3

〈(
θ+ − µ

) (
θ− − µ

)〉
+

1

3

〈(
θ−−µ

)2
〉

.

The first term B.6 of the systematic error represents a mean squared
fluctuation of the underlying rate, and is independent of the choice
of the bin size ∆ (See Eq. 3.8). We introduce the cost function by
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subtracting the variance of the underlying rate from the original MISE:

C ′
n (∆) ≡ MISE− 1

T

∫
(λt − µ)2 dt

=
1

3

〈
E(θ̂+ − θ+)2

〉
+

1

3

〈
E(θ̂− − θ−)2

〉

− 〈(
θ+−µ

) (
θ0−µ

)〉− 〈(
θ− − µ

) (
θ0 − µ

)〉

− 〈(
θ+−µ

)
θ∗

〉
+

〈(
θ−−µ

)
θ∗

〉

+
1

3

〈(
θ+ − µ

)2
〉

+
1

3

〈(
θ−−µ

)2
〉

+
1

3

〈(
θ+ − µ

) (
θ− − µ

)〉
. (B.9)

By using the relations,
〈
E(θ̂+ − θ+)2

〉
=

〈
E(θ̂− − θ−)2

〉
, 〈(θ+ − µ)2〉 =

〈(θ− − µ)2〉, 〈(θ+ − µ) (θ0 − µ)〉 = 〈(θ− − µ) (θ0 − µ)〉, and 〈(θ+ − µ) θ∗〉 =
−〈(θ− − µ) θ∗〉, the cost function becomes

Cn (∆) =
2

3

〈
E(θ̂+ − θ+)2

〉

− 2
〈(

θ+−µ
) (

θ0−µ
)〉− 2

〈(
θ+−µ

)
θ∗

〉

+
2

3

〈(
θ+ − µ

)2
〉

+
1

3

〈(
θ+ − µ

) (
θ− − µ

)〉
. (B.10)

The first term of Eq. B.10 can be estimated from the data, using
the variance-mean relation (Eq. 3.14). The last four terms of Eq. B.10
are the covariances of the expected rates θ−, θ+, θ0, and θ∗, which are
not observables. We can estimate them by using the covariance decom-
position rule for unbiased estimators:

〈
E

(
θ̂+ −

〈
Eθ̂+

〉)(
θ̂p −

〈
Eθ̂p

〉)〉

=
〈
E

[(
θ̂+ − θ+

)(
θ̂p − θp

)]〉
+

〈
(θ+ − 〈θ+〉)(θp − 〈θp〉)〉 . (B.11)

where p denotes −, +, 0, or ∗. Unlike the bar-graph histogram, how-
ever, the mean-variance relation for the Poisson statistics is not directly
applicable to the second term. We suggest estimating these covariance
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terms from multiple sample sequences. The r.h.s of Eq. B.11 is decom-
posed into

E
〈(

θ̂+ −
〈
Eθ̂+

〉)(
θ̂p −

〈
Eθ̂p

〉)〉

= E
〈(

θ̂+−
〈
θ̂+

〉) (
θ̂p−

〈
θ̂p

〉)〉
+ E

(〈
θ̂+

〉
− 〈

θ+
〉)(〈

θ̂p
〉
− 〈θp〉

)
.

The second term of the r.h.s. of this equation is not dependent on the
bin size selection. Therefore, we redefine the cost function appropriately
as

Cn (∆) = C ′
n (∆) + 2E

(〈
θ̂+

〉
− 〈

θ+
〉)(〈

θ̂0
〉
− 〈

θ0
〉)

+ 2E
(〈

θ̂+
〉
− 〈

θ+
〉)(〈

θ̂∗
〉
− 〈θ∗〉

)
− 2

3
E

(〈
θ̂+

〉
− 〈

θ+
〉)2

This cost function can be estimated by following a recipe summarized
as ‘Algorithm 3’.

B.3 Extrapolation of the bin size

As in the case of the bar-graph histogram the cost function for any m
sequences of event sequences can be extrapolated using the variance-
mean relation for the Poisson statistics,

Cm (∆|n) =
2

3∆

(
1

m
− 1

n

) 〈
Eθ̂+

n

〉
+ Cn (∆) , (B.12)

where Cn (∆) is the original cost function (Eq. B.10). With the origi-
nal cost function Cn (∆), we can easily estimate a cost function for m
sequences with ‘Algorithm 4’.

B.4 Theoretical cost function

We can obtain a ‘theoretical’ cost function of a line-graph histogram
directly from the mean rate µ and the correlation φ(t) of the rate fluc-

43



tuation. According to the mean-variance relation based on the Cramér-
Rao (in)equality (Eq. 3.24), the cost function (Eq. B.10) is given by

Cn (∆) =
2µ

3n∆
− 2

∆2

∫ ∆

0

∫ ∆/2

−∆/2

(
1 +

2t2
∆

)
φ (t1 − t2) dt1dt2

+
2

3∆2

∫ ∆

0

∫ ∆

0

φ (t1 − t2) dt1dt2 +
1

3∆2

∫ ∆

0

∫ 0

−∆

φ (t1 − t2) dt1dt2.

(B.13)

Scaling relations of the optimal bin sizes

By expanding the correlation of the rate fluctuation,

φ (t) = φ (0)+φ′ (0+) |t|+1

2
φ′′ (0) t2+

1

6
φ′′′ (0+) |t|3+ 1

24
φ′′′′ (0) t4+O

(|t|5) ,

we obtain

Cn(∆) =
2µ

3n∆
−φ (0)− 37

144
φ′ (0+) ∆+

181

5760
φ′′′ (0+) ∆3+

49

2880
φ′′′′ (0) ∆4+O(∆5).

(B.14)
Unlike the bar-graph histogram, the line graph successfully approxi-
mates the original rate to first order in ∆, and therefore the O(∆2)
term in the cost function vanishes for a line-graph histogram.

The optimal bin size ∆∗ is obtained from dCn (∆) /d∆ = 0. For a
rate process that fluctuates smoothly in time, the correlation function
is a smooth function, resulting in φ′(0) = 0 and φ′′′(0) = 0 due to the
symmetry φ(t) = φ(−t), and we obtain the scaling relation

∆∗ ∼
(

1280µ

181φ′′′′ (0) n

)1/5

. (B.15)

The exponent −1/5 for a line-graph histogram is different than the
exponent −1/3 for a bar-graph histogram (Eq. 3.32).

If the correlation of rate fluctuation has a cusp at t = 0 (φ′(0+) < 0),
we obtain the scaling relation

∆∗ ∼
(
− 96µ

37φ′(0+)n

)1/2

, (B.16)
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by ignoring the higher order terms. The exponent −1/2 for a line-
graph histogram is the same as the exponent for a bar-graph histogram
(Eq. 3.33).
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Algorithm3: Bin size selection for a line-graph histogram

(i) Divide the observation period T into N + 1 bins of width ∆.
Count the number of events ki(j) that enter ith bin from jth
sequence.
Define k

(−)
i (j) ≡ ki(j) and k

(+)
i (j) ≡ ki+1(j) (i = 1, 2, · · · , N).

Divide the period [∆/2, T −∆/2] into N bins of width ∆.

Count the number of events k
(0)
i (j) that enter ith bin from jth

sequence.
In each bin, compute k

(∗)
i (j) ≡ 2

∑
` t`i(j)/∆, where t`i(j) is the

time of the `th event that enters the ith bin, measured from
the center of each bin.

(ii) Sum up k
(p)
i (j) for all sequences: k

(p)
i ≡

n∑
j=1

k
(p)
i (j), where p =

{−, +, 0, ∗}.
Average those event counts with respect to all the bins: k̄(p) ≡
1

N

N∑
i=1

k
(p)
i .

Compute covariances of k
(+)
i and k

(p)
i :

c(+, p) ≡ 1

N

N∑
i=1

(
k

(+)
i − k̄(+)

)(
k

(p)
i − k̄(p)

)
.

Compute covariances of k
(+)
i (j) and k

(p)
i (j) with respect to se-

quences, and average over time:

c̄(+, p) ≡ 1

N

N∑
i=1

1

n− 1

n∑
j=1

(
k

(+)
i (j)− k

(+)
i

n

)(
k

(p)
i (j)− k

(p)
i

n

)
.
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Algorithm3: continued from page 46.

Finally, compute

σ(+, p) ≡ c(+, p)

(n∆)2
− c̄(+, p)

n∆2
.

(iii) Compute the cost function,

Cn(∆) =
2

3

k̄(+)

(n∆)2
− 2σ(+, 0) − 2σ(+, ∗) +

2

3
σ(+, +) +

1

3
σ(+,−).

(iv) Repeat i through iii while changing ∆. Find ∆∗ that minimizes
Cn(∆).

Algorithm4: Extrapolation method for a line-graph histogram

A Construct the extrapolated cost function,

Cm (∆|n) =
2

3

(
1

m
− 1

n

)
k̄(+)

n∆2
+ Cn(∆),

where Cn(∆) is the cost function for the line-graph histogram
computed for n trials with the Algorithm 3.

B Search for ∆∗
m that minimizes Cm (∆|n).

C A and B while changing m, and plot 1/∆∗
m vs 1/m to search

for the critical value 1/m = 1/n̂c above which 1/∆∗
m practically

vanishes.
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Appendix C

A Density Estimation with
Sample Size Constraint

In this Appendix, we derive cost functions of a bar- and a line-graph
histogram when the data with predetermined size is sampled from a
population. In Chapter 3, we investigated the histogram of the data
that are derived from an inhomogeneous Poisson point process, where
the sample size is not determined. Due to the assumption of iid random
variables, histograms of the data obtained by the two different experi-
mental designs can be equally seen as the estimation of the probability
density function. However, the difference between the two experimen-
tal designs appears when one considers ensemble of histograms as in
the MISE criterion.

The MISE is composed of the sampling and systematic errors as
shown in Eq.3.6. A similar equation for a line-graph histogram was
given by Eq.B.4. For the Poisson point process, the sampling error sim-
ply obeys the variance of the Poisson statistics. When a fixed number
of samples are collected from a population, the sampling error becomes
smaller than the variance of the Poisson statistics. As a result, the
optimal bin size obtained under the sample size constraint is slightly
smaller than that obtained under the Poisson point process framework.
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C.1 A bar-graph histogram

The bar height of a histogram for a density estimation is given by
θ̂n = ki/n∆. In this context, n should be read as the number of samples
(it is not the number of experimental trials). We label the sequence of
the samples by j (= 1, · · · , n), and introduce ui (j). ui (j) is a unity if
the jth sampled data is observed in the ith bin (i = 1, · · · , N) , and
zero otherwise. Summation of ui (j) with respect to j equals ki:

ki =
n∑

j=1

ui (j) . (C.1)

The sampling error for the ith bin is given by

1

n

1

n− 1

n∑
j=1

{
ui (j)

∆
− 1

n

n∑
j=1

ui (j)

∆

}2

(C.2)

By using the notation, ūi = 1
n

n∑
j=1

ui (j) = ki/n, we obtain

1

n∆2

1

n− 1

n∑
j=1

(ui (j)− ūi)
2 =

1

n∆2

{
1

n− 1

n∑
j=1

ui (j)
2 − n

n− 1
ū2

i

}

=
1

n∆2

(
1

n− 1
ki − 1

n (n− 1)
k2

i

)
(C.3)

To obtain the last equality, we have used a relation,

ki =
n∑

j=1

ui (j) =
n∑

j=1

ui (j)
2 . (C.4)

The last equality holds because ui (j) = {0, 1}. This relation manifests
the constraint on the total sample size.

In the derivation of the cost function Eq.3.13 in Section 3.2 in Chap-
ter 3, we have only assumed that a histogram is an unbiased estimator
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of the underlying function. Therefore, the cost function in the form of
Eq.3.13,

Cn (∆) = 2
〈
E(θ̂ − θ)2

〉
− E

〈
(θ̂ − 〈θ̂〉)2

〉
. (3.13)

can be used to obtain an optimal bin size of a regular histogram in
general. Hence, by using Eq.C.3 to estimate the sampling error term
in Eq.3.13, we obtain

CFIX
n (∆) =

2

n∆2

{
1

n− 1

1

N

N∑
i=1

ki − 1

n (n− 1)

1

N

N∑
i=1

k2
i

}

− 1

N

∑
k2

i −
(

1

N

∑
ki

)2

=
2

(n− 1) ∆T
− n + 1

n2 (n− 1) ∆T

N∑
i=1

k2
i −

1

T 2
. (C.5)

This cost function is identified with Rudemo’s estimator for his risk
function (Rudemo, 1982).

The relations between the cost function of the samples derived from
the Poisson point process and CFIX

n (∆) is given by

Cn (∆) =
n− 1

n
CFIX

n (∆) +
1

n3∆T

∑
k2

i +
1

nT 2
. (C.6)

Due to the second term, the expected optimal bin size of a Poisson
point process is slightly larger than that obtained under fixed sample
sizes. This result arises from the fact that the histograms constructed
from the data derived from a Poisson point process contains an addi-
tional fluctuation in its total sample size compared to the histograms
constructed from the data whose size is fixed. However, since the dif-
ference is on the order of O (n−3), the two cost functions yield indistin-
guishable optimal bin size in practice.
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C.2 A line-graph histogram

From Eq.B.9, the cost function for a line-graph histogram becomes

Cn (∆) =
1

(n∆)2

{
1

3
c(+, +) +

1

3
c(−,−) +

1

3
c(+,−)

}

− 1

(n∆)2

{(
c(+, 0) + c(−, 0)

)
+

(
c(+, ∗) + c(−, ∗))}

+
1

n∆2

{(
c̄(+, 0) + c̄(−, 0)

)− (
c̄(+, ∗) + c̄(−, ∗))} . (C.7)

The covariance with respect to the bins can be easily calculated as

c(p,q) ≡ 1

N

N∑
i=1

(
k

(p)
i − k̄(p)

)(
k

(q)
i − k̄(q)

)
, (C.8)

where p, q = {+,−, 0, ∗} and k̄(p) = 1
N

∑N
i=1 k

(p)
i . The last term in the

cost function is obtained by using

c̄(+, 0) + c̄(−, 0) =
1

n− 1

1

N

N∑
i=1

k
(0)
i − 1

n (n− 1)

1

N

N∑
i=1

{
k

(+)
i + k

(−)
i

}
k

(0)
i ,

(C.9)

c̄(+, ∗) + c̄(−, ∗) =
1

n− 1

1

N

N∑
i=1

k
(∗)
i − 1

n (n− 1)

1

N

N∑
i=1

{
k

(+)
i + k

(−)
i

}
k

(∗)
i .

(C.10)

These equations are derived from the argument below under the
constraint on the total sample size. We denote the covariance with
respect to the sampled data in theith bin by c̄

(p, q)
i , which is defined as

c̄
(p, q)
i ≡ 1

n− 1

n∑
j=1

(
k

(p)
i (j)− k

(p)
i

n

)(
k

(q)
i (j)− k

(q)
i

n

)
. (C.11)
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The covariance averaged over the bins is given by c̄(p, q) = 1
N

∑N
i=1 c̄

(p, q)
i ,

where c̄
(p, q)
i is given by

c̄
(p,q)
i =

1

n− 1

n∑
j=1

(
u

(p)
i (j)− ū

(p)
i

)(
u

(q)
i (j)− ū

(q)
i

)

=
1

n− 1

n∑
j=1

u
(p)
i (j)u

(q)
i (j)− n

n− 1
ū

(p)
i ū

(q)
i . (C.12)

Since the jth sample that enters the ith bin locates in either a left side
[−∆/2, 0] or a right side [0, ∆/2] of the bin, we have

n∑
j=1

u
(+)
i (j)u

(0)
i (j) +

n∑
j=1

u
(−)
i (j)u

(0)
i (j)=k

(0)
i , (C.13)

n∑
j=1

u
(+)
i (j)u

(∗)
i (j) +

n∑
j=1

u
(−)
i (j)u

(∗)
i (j)=k

(∗)
i . (C.14)

These equations hold because u
(p)
i (j) = {0, 1}. Note that

ū
(p)
i ū

(q)
i =k

(p)
i k

(q)
i /n2. (C.15)

By using these equations we obtain

c̄
(+, 0)
i + c̄

(−, 0)
i =

1

n− 1
k

(0)
i − 1

n (n− 1)

{
k

(+)
i k

(0)
i + k

(−)
i k

(0)
i

}
, (C.16)

c̄
(+, ∗)
i + c̄

(−, ∗)
i =

1

n− 1
k

(∗)
i − 1

n (n− 1)

{
k

(+)
i k

(∗)
i + k

(−)
i k

(∗)
i

}
. (C.17)
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