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Abstract

Classical studies in neurophysiology are
based on the idea that stimulus informa-
tion is encoded in the firing rates of single
neurons. Alternatively, precise spike co-
ordination is discussed as an indication of
coordinated network activity and may be
expressed by higher-order correlation be-
tween the simultaneous spiking activities
of neurons. As shown in earlier studies [1],
correlation between neurons may modu-
lating in time in relation to the behavioral
demand.

Here, we simultaneously estimate the
time-dependent rate and correlation un-
derlying multiple-neuron spiking activities
by means of state-space analysis [2,3].
We model discretized parallel spike trains
by a conditionally independent multivari-

ate Bernoulli process using a log-linear
link function [4-8]. A nonlinear recur-
sive filtering formula is derived from a log-
quadratic approximation to the posterior
distribution of the state. Together with a
fixed-interval smoothing algorithm, time-
dependent log-linear parameters are esti-
mated. The smoothed estimates are op-
timized via EM-algorithm such that their
prior covariance matrix maximizes the ex-
pected complete data log-likelihood. In
addition, we perform model selection on
the hierarchical log-linear models to avoid
over-fitting. Application of the method
to simultaneously recorded neuronal spike
sequences is expected to contribute to
uncover dynamic cooperative activities of
neurons in relation to behavior.

Introduction

To study cooperative neural network activity, we develop state-space method to
estimate the time-dependent correlation structures embedded in parallel spike trains.
Hypothetical Dynamic Cooperative Activity of Neurons
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Parallel Spike Sequences

Experiment

Precise spike coordination may appear due to the coordinated network activity.
Composition of the spike coordination may dynamically change.

Evidence of Dynamical Correlation
Riehle A., Grun S., Diesmann M. & Aertsen A. Science, 1997, 278, 1950-1953 

(in Engel et. al. Nature Reviews Neuroscience, 2001, 2, 704-716)

Excess synchrony appeared with expectation.

Steinmetz P.N., Roy A., Fitzgerald P.J., Hsiao, S.S., Johnson K.O. & Niebur E. Nature, 2000, 404, 187-190 

(in Salinas E. & Sejnowski T.J. Nat Rev Neurosci, 2001, 2, 539-550)

Excess synchrony appeared with attention.

It has been shown that spike correlation with ms precision i) is modulated in time and
ii) occurs at behaviorally relevant instances.

What is the Higher Order Correlation?
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Neurons are independent. 

Synchrony may appear by chance.

Neuron 1 and 2 are positively correlated. 

Triplets may appear by chance.

Three neurons are connected with pairwise correlations. 

Triplets may appear by chance.

A triplewise correlation is added. 

Ecess triplets are generated.
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Positive higher order correlation (HOC) indicates excess synchrony that can not be
explained by the lower order correlations.

Log-linear model

The log-linear model provides a well-defined measure of higher-order correlation based
on information geometry [5].

3 Neurons

N Neurons
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( )ψ θ : cumulant generating function

To N-tuple parallel spike sequences, one can fit the sub-model with up to r-th order correlations: 

Rate model (Independent model)

Tripplewise-correlation model

Pairwise-correlation model
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The last parameter of the log-linear model provides the higher-order correlation. 

Tripplewise correlation

N-th order correlation

Amari, IEEE Trans. Inf. Theory, 2001

The Log-linear model of two binary variables
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State-space Analysis

A state-space framework allows regression of a time-dependent system to spike data.
State-Space Model of Parallel Spike Trains
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Evidence

E-step: Estimate of the posterior distribution, given hyper-parameters.

via Recursive filtering/smoothing algorithm

M-step: Hyper-parameter optimization, given the posterior. 

Optimize the hyper-parameters by maximizes 

Goal:

Bayes’ Theorem

Solution:

( )1: 1:| ,T Tp ∗θ y wObtain the Posterior
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the lower bound of evidence (Q-function). n: the number of trials.
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Filtering/smoothing and hyper-parameter optimization
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Optimization of Initial Values

Optimization of AR(1) parameters

Optimization of covariance matrix
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2 Neurons

Synchrony between two neurons were appropriately attributed to
either a chance coincidence or a pairwise correlation.

Time-dependent rates + Constant correlationConstant rates + Time-dependent correlation
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[First column] 50 trials of simulated parallel spike trains. Each pattern of spikes was counted with 1[ms] resolution. Red dots indicate synchronous spikes
(doublets). [Second column] Log-linear parameters. Shaded area indicates 99% confidence interval.

3 Neurons

Time-dependence of triplewise correlation was estimated
with an optimized covariance matrix and autoregressive parameters.
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[First column] 100 trials of simulated parallel spike train. Each pattern of spikes was counted with 1[ms] resolution. Red dots indicate synchronous spikes (triplets).
[Second column] Log-linear parameters. Shaded area indicates 99% confidence interval. [Third column] Optimized hyper-parameters.

Model Selection

To validate that the inclusion of the triplewise correlation improves
the goodness-of-fit, we computed ABICs for the hierarchical state-space models.
The Akaike Bayesian information criterion (ABIC) is computed as

ABIC = −2 log p(y1:T |w) + 2 dimw,

where log p(y1:T |w) =
∑T
t=1 log p(yt|y1:t−1,w) ∼ n

∑T
t=1(y

′
tθt|t−1 − ψt|t−1).

Note that the marginal likelihood takes account of the parameter uncertainty only
(its approximation is known as BIC).

Rate model Pair-corr. model Triple-corr. model
r = 1 r = 2 r = 3

n = 5 2085∗ 2097 2144
n = 20 7913 7698∗ 7728
n = 50 19263 18542 18540∗
n = 100 38478 36811 36781∗
n = 200 76683 73330 73238∗

The complexity of the model needs to be selected based on the sample size and the
prominence of higher-order structure.

8 Neurons

State-space method applied to a sub-model is useful for large-scale data analysis.
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Modeling external signals’ effects

Incorporation of the cue signals into the model may be useful for detecting
assemblies related to behavior.
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Summary and Outlook

We developed a method for estimating time-varying rate and higher-order correlation
structure in parallel spike sequences. To our knowledge, it is the first method that can
resolve the time-dependent spike rates and ’well-defined’ spike correlation measures
simultaneously. The method is thus applicable to simultaneously recorded neuronal
spike sequences recorded from an awake behaving animal. Such an application is
expected to provide us with new insights into dynamic assembly activities, their com-
positions, and behavioral relevance.
The presented method will be summarized in
Shimazaki H., Amari S., Brown E. N., and Grün S. “State-space Analysis on Time-
varying Correlations in Parallel Spike Sequences”, Proc. IEEE ICASSP2009 in press
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