前章では記憶なしの特徴をもつスパイク時系列,すなわちポアソン過程について調べた.ポアソン過程のスパイク間隔は指数分布になり,一定時間内のスパイク数はポアソン分布に従うことをみた.また瞬間スパイク生成率を導入して定常ポアソン過程を定義することもできた.本章ではスパイク生成に記憶がある場合のモデルを導入する.特に大事なのはスパイク生成率が直前のスパイク生成時刻だけに依存する場合でリニューアル過程と呼ばれる.瞬間生成率が2つ以上前のスパイク生成時刻に依存する一般的な点過程モデルに対して,直前のスパイクのみに依存することからこの名称で呼ばれる.
神経細胞のスパイク時系列は強いリニューアル性があることが知られている.これは神経細胞のスパイク生成機構の生理学上の制約による.特にスパイク生成後
[ms]程度までの間は次のスパイクを生成できない状態になる.これを絶対不応期(Absolute refractory period)と呼ぶ.このためリニューアル過程を用いて神経スパイク発火を高い精度で記述することができる.
ここで本章で使う統計量をまとめておく.用語は基本的に生存時間解析(Survival analysis)に従うが,生存時間解析ではイベントが個体の死亡を意味するため関連語句がスパイクの解析にはなじまない.そこでいくつかは違う名称で呼ぶこともある.まずスパイク発生時刻の確率密度関数(probability density function, p.d.f.)を
とする.これをスパイク密度分布(spike density funtion),もしくはスパイク間隔分布と呼ぶ Inter-spike Interval (ISI) distribution)と呼ぶ.スパイクの発生時刻が
![]() |
(1.16) |
![]() |
![]() |
(1.17) |
![]() |
(1.18) |
リニューアル過程では瞬間スパイク生成率は,最後のスパイクの時刻を基準にして時間的に変動する.少なくとも
秒間スパイクが生成されず,
においてスパイクを生成する確率として,瞬間スパイク生成率
を導入しよう.点過程理論では条件付強度関数(conditional intensity function)という.生存時間解析(Survival analysis)ではハザード関数(hazard function),年齢別故障率(age-specific failure rate),回復関数(recovery function)などの名称でも呼ばれる[Cox, 1962].
![]() |
(1.20) |
ガンマ分布はアーラン分布の拡張であることは既に述べた.リニューアル過程の中でも数学的な取り扱いが比較的容易で使い勝手が良い分布である.ガンマ分布のハザード関数を求めてみよう.
![]() |
(1.24) |
ガンマ分布のハザード関数が定数に収束するのに対し,工業製品の故障率のようなイベントの場合は経年劣化するからハザード関数は時間とともに増加すると考えられる.時間とともにハザード関数がべき的に増加する場合を考えよう.
![]() |
![]() |
|
![]() |
で与えられる.この表記では,期待値は
![]() ![]() ![]() |
神経細胞スパイクの場合は死亡率と全く逆のハザード関数が描ける.神経細胞のスパイク活動のISIを良く表すとされる逆ガウス分布(Inverse Gaussian distribution)[]を見てみよう.
逆ガウス分布の期待値は
逆ガウス分布のハザード関数を見てみると増加から減少に転じている.スパイク発生率はゼロから始まり,時間とともに増加する.これはガンマ分布のハザード関数と同じ性質である.ガンマ分布と違うのはハザード関数が減少に転じる点にある.つまり時間が経つにつれてスパイク発生頻度は減少していく.
神経細胞のモデルとしてどのISI分布を用いたモデルが適しているかについて一般的なコンセンサスはないと思われる.神経細胞の種類やその細胞の存在する部位によって発火活動の特徴は大きく異なることが知られている.逆ガウス分布はブラウン運動のファーストパッセージタイムとして導出されるという背景があり,不応期をよく捉えるとする研究がある.ガンマ分布はバースト活動から規則発火まで表現することができ,数学的な取り扱いも用意であるという利点がある.